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10.1 Introduction

Autonomy is increasingly prevalent in many applications, ranging from recommen-
dation systems to fully autonomous vehicles, that require strong safety assurance
guarantees. However, this is difficult to achieve, since autonomous systems are
large, complex systems, that operate in uncertain environment conditions and
often use data-driven, machine-learning algorithms. Machine-learning techniques
such as deep neural nets (DNN), widely used today, are inherently unpredictable
and lack the theoretical foundations to provide the assurance guarantees needed
by safety-critical applications. Current assurance approaches involve design and
testing procedures that are expensive and inadequate, as they have been developed
mostly for human-in-the-loop systems and do not apply to systems with advanced
autonomy.

We propose a compositional approach for the scalable verification of learning-
enabled autonomous systems to achieve design-time assurance guarantees. The
approach is illustrated in Fig. 10.1. The input to the framework is the design model
of an autonomous system (this could be given as, e.g., Simulink/Stateflow or
prototype implementation). As the verification of the system as a whole is likely
intractable we advocate the use of compositional assume-guarantee verification
whereby formally defined contracts allow the designer to model and reason about
learning-enabled components working side-by-side with the other components in
the system. These contracts encode the properties guaranteed by the component and
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Fig. 10.1 Overview

the environment assumptions under which these guarantees hold. The framework
will then use compositional reasoning to decompose the verification of large systems
into the more manageable verification of individual components, which are formally
checked against their respective assume-guarantee contracts. The approach enables
separate component verification with specialized tools (e.g., one can use software
model checking for a discrete-time controller but hybrid model checking for the
plant component in an autonomous system) and seamless integration of DNN
analysis results.

For DNN analysis, we propose to use clustering techniques to automatically
discover safe regions where the networks behave in a predictable way. The evidence
obtained from this analysis is conditional, subject to constraints defined by the safe
regions, and is encoded in the assume-guarantee contracts. The contracts allow us
to relate the DNN behavior to the validity of the system-level requirements, using
compositional model checking. We illustrate the approach on an example of an
autonomous vehicle that uses DNN in the perception module.

10.2 Compositional Verification

Formal methods provide a rigorous way of obtaining strong assurance guarantees
of computing systems. There are several challenges to formally modeling and veri-
fying autonomous systems. Firstly, such systems comprise of many heterogeneous
components; each with different implementations and requirements, which can be
addressed best with different verification models and techniques. Secondly, the state
space of such systems is very large. Suppose we could model all the components of
such a system as formally specified (hybrid) models; even ignoring the learning
aspect, their composition would likely be intractable. The DNN components make
the scalability problem even more serious: for example, the feature space of RGB
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1000 × 600 px pictures for an image classifier used in the perception module of an
autonomous vehicle contains 2561000×600×3 elements. Last but not the least, it is
not clear how to formally reason about the DNN components as there is no clear
consensus in the research community on a formal definition of correctness for the
underlying machine learning algorithms.

We propose a compositional assume-guarantee verification approach for the
scalable verification of autonomous systems where DNN components are working
side-by-side with the other components. Compositional verification frameworks
have been proposed before to improve the reliability and predictability of CPS [1,
4, 5, 18], but none of these works address systems that include DNN compo-
nents. Recent work [6] proposes a compositional framework for the analysis of
autonomous systems with DNN components. However, that approach addresses
falsification in such systems and, while that is very useful for debugging, it is not
clear how it can be used to provide assurance guarantees.

Assume-guarantee reasoning attempts to break up the verification of a large
system into the local verification of individual components, using assumptions
about the rest of the system. The simplest assume-guarantee rule first checks that
a component M1 satisfies a property P under an assumption A (this can be written
as M1 |= A → P ). If the “environment" M2 of M1 (i.e., the rest of the system in
which M1 operates) satisfies A (written as M2 |= true → P ), then we can prove
that the whole system composed of M1 and M2 satisfies P . Thus we can decompose
the global property P into two local assume-guarantee properties (i.e., contracts)
A → P and A that are expected to hold on M1 and M2, respectively. Other,
more involved, rules allow reasoning about the circular dependencies between
components, where the assumption for one component is used as the guarantee of
the other component and vice versa; if the conjunction of the assumptions implies
the specification then the overall system guarantees the system-level requirement.
Rules that involve circular reasoning use inductive arguments, over time, formulas
to be checked, or both, to ensure soundness. Furthermore, the rules can be naturally
generalized to reasoning about more than two components and use different notions
for property satisfaction such as trace inclusion or refinement checking.

The main challenge with assume-guarantee reasoning techniques is to come up
with assumptions and guarantees that can be suitably used in the assume-guarantee
rules. This is typically a difficult manual process. Progress has been made on
automating assume-guarantee reasoning using learning and abstraction-refinement
techniques for iterative building of the necessary assumptions [19]. The original
work was done in the context of systems expressed as finite-state automata, but
progress has been made in the automated compositional verification for probabilistic
and hybrid systems [2, 14], which can be used to model autonomous systems.

Assume-guarantee reasoning can be used for the verification of autonomous
systems either by replacing the component with its assume-guarantee specification
in the compositional proofs or by using an assume-guarantee rule such as the
above to decompose the verification of the systems into the verification of its
components. Furthermore, the assume-guarantee specifications can be used to drive
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component-based testing and run-time monitoring, in the cases where the design-
time formal analysis is not possible, either because the components are too large
or they are adaptive, i.e. the component behavior changes at run-time (using, e.g.,
reinforcement learning).

10.3 Analysis for Deep Neural Network Components

Deep neural networks (DNNs) are computing systems inspired by the biological
neural networks that constitute animal brains. They consist of neurons (i.e., com-
putational units) organized in many layers. These systems are capable of learning
various tasks from labeled examples without requiring task-specific programming.
DNNs have achieved impressive results in computer vision, autonomous trans-
port, speech recognition, social network filtering, bioinformatics, and many other
domains and there is increased interest in using them in safety-critical applications
that require strong assurance guarantees. However, it is difficult to provide such
guarantees since it is known that these networks can be easily fooled by adversarial
perturbations: minimal changes to correctly-classified inputs, that cause the network
to misclassify them. For instance, in image-recognition networks it is possible to add
a small amount of noise (undetectable by the human eye) to an image and change
how it is classified by the network.

This phenomenon represents a safety concern, but it is currently unclear how
to measure a network’s robustness against it. To date, researchers have mostly
focused on efficiently finding adversarial perturbations around select individual
input points. The goal is to find an input x′ as close as possible to a known input
x such that x′ and x are labeled differently. Finding the optimal solution for this
problem is computationally difficult, and so various approximation approaches have
been proposed. Some approaches are gradient based [7, 8, 20], whereas others use
optimization techniques [3]. These approaches have successfully demonstrated the
weakness of many state-of-the-art networks; however, these approaches operate on
individual input points, and it is unclear how to apply them to large input domains,
unless one does a brute-force enumeration of all input values which is infeasible for
most practical purposes. Furthermore, because they are inherently incomplete, these
techniques cannot even provide any guarantees around the few selected individual
points. Recent approaches tackle neural network verification [10, 13] by casting
it as an SMT solving problem. Still, these techniques operate best when applied
to individual points and further do not have a well-defined rationale to select
meaningful regions around inputs within which the network is expected to behave
consistently.

In [9], we developed a DNN analysis to automatically discover input regions that
are likely to be robust to adversarial perturbations, i.e. to have the same true label,
akin to finding likely invariants in program analysis. The technique takes inputs
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with known true labels from the training set and it iteratively applies a clustering
algorithm [12] to obtain small groups of inputs that are close to each other (with
respect to different distance metrics) and share the same true label. Each cluster
defines a region in the input space (characterized by the centroid and radius of the
cluster). Our hypothesis is that for regions formed from dense clusters, the DNN is
well-trained and we expect that all the other inputs in the region (not just the training
inputs) should have the same true label. We formulate this as a safety check and we
verify it using off-the-shelf solvers such as Reluplex [13]. If a region is found to be
safe, we provide guarantees w.r.t all points within that region, not just for individual
points as in previous techniques.

As the usual notion of safety might be too strong for many DNNs, we introduce
the concept of targeted safety, analogous to targeted adversarial perturbations
[7, 8, 20]. The verification checks targeted safety which, given a specific incorrect
label, guarantees that no input in the region is mapped by the DNN to that
label. Therefore, even if in that region the DNN is not completely robust against
adversarial perturbations, we give guarantees that it is safe against specific targeted
attacks.

As an example, consider a DNN used for perception in an autonomous car that
classifies the images of a semaphore as red, green, or yellow. We may want to
guarantee that the DNN will never classify the image of a green light as a red light
and vice versa but it may be tolerable to misclassify a green light as yellow, while
still avoiding traffic violations.

The safe regions discovered by our technique enable characterizing the input–
output behavior of the network over partitions of the input space, which can be
encoded in the assume-guarantee specifications for the DNN components. The
regions will define the conditions (assumptions), and the guarantees will be that
all the points within the region will be assigned the same labels. The regions could
be characterized as geometric shapes in Euclidean space with centroids and radii.
The conditions would then be in terms of standard distance metric constraints on
the input attributes. For instance, all inputs within a Euclidean distance r from the
centroid cen of the region would be labeled l by the network.

Note that the verification of even simple neural networks is an NP-complete
problem and is very difficult in practice. Focusing on clusters means that verification
can be applied to small input domains, making it more feasible and rendering the
approach as a whole more scalable. Further, the verification of separate clusters can
be done in parallel, increasing scalability even further.

In [9] we applied the technique on the MNIST dataset [16] and on a neural
network implementation of a controller for the next-generation Airborne Collision
Avoidance System for unmanned aircraft (ACAS Xu) [11], where we used Reluplex
for the safety checks. For these networks, our approach identified multiple regions
which were completely safe as well as some which were only safe for specific labels.
It also discovered adversarial examples which were confirmed by domain experts.
We discuss the ACAS Xu experiments in more detail below.
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10.3.1 ACAS Xu Case Study

ACAS X is a family of collision avoidance systems for aircraft which is currently
under development by the Federal Aviation Administration (FAA) [11]. ACAS Xu
is the version for unmanned aircraft control. It is intended to be airborne and receive
sensor information regarding the drone (the

ownship) and any nearby intruder drones, and then issue horizontal turning
advisories aimed at preventing collisions. The input sensor data includes:

• ρ: distance from ownship to intruder;
• θ : angle of intruder relative to ownship heading direction;
• ψ : heading angle of intruder relative to ownship heading direction;
• vown: speed of ownship;
• vint: speed of intruder;
• τ : time until loss of vertical separation; and
• aprev: previous advisory.

The five possible output actions are as follows: Clear-of-Conflict (COC), Weak
Right, Weak Left, Strong Right, and Strong Left. Each advisory is assigned a
score, with the lowest score corresponding to the best action. The FAA is currently
exploring an implementation of ACAS Xu that uses an array of 45 deep neural
networks. These networks were obtained by discretizing the two parameters, τ

and aprev, and so each network contains five input dimensions and treats τ and
aprev as constants. Each network has 6 hidden layers and a total of 300 hidden
ReLU activation nodes. We were supplied a set of cut-points, representing valid
important values for each dimension, by the domain experts [11]. We generated
a set of 2,662,704 inputs (cartesian product of the values for all the dimensions).
The network was executed on these inputs and the output advisories (labels) were
verified. These were considered as the inputs with known labels for our experiments.

We were able to prove safety for 177 regions in total (125 regions where the
network was completely safe against mis-classification to any label and 52 regions
where the network was safe against specific target labels). An example of the safety
guarantee is as follows:

∀ x ∈ |x − {0.19, 0.31, 0.28, 0.33, 0.33}|L1 ≤ 0.28 ⇒ label(x) = COC

(10.1)

Here {0.19,0.31,0.28,0.33,0.33} are the normalized values for the five input
attributes (ρ,θ ,ψ ,vown,vint ) corresponding to the centroid of the region and 0.28
is the radius. The distance is in the Manhattan distance metric (L1). The contract
states that under the condition that an input lies within 0.28 distance from the input
vector {0.19,0.31,0.28,0.33,0.33}, the network is guaranteed to mark the action for
it as COC which is the desired output.

Our analysis also discovered adversarial examples of interest, which were
validated by the developers. Figure 10.2 illustrates such an example for ACAS Xu.
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Fig. 10.2 Inputs highlighted
in light blue are mis-classified
as strong right instead of
COC.
Crossrange = ρ · sin(θ),
Downrange = ρ · cos(θ)
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The safety contracts obtained with the region analysis can be used in the com-
positional verification of the overall autonomous systems, which can be performed
with standard model checkers.

10.4 Example

We illustrate our compositional approach on an example of an autonomous vehicle.
The platform includes learning components that allow it to detect other vehicles
and drive according to traffic regulations; the platform also includes reinforcement
learning components to evolve and refine its behavior in order to learn how to avoid
obstacles in a new environment.

We focus on a subsystem, namely an automatic emergency breaking system,
illustrated in Fig. 10.3. It has three components: the BreakingSystem, the Vehicle
(which, to simplify the presentation, we assume it includes both the autonomous
vehicle and the environment), and a perception module implemented with a DNN;
there may be other sensors (radar, LIDAR, GPS) that we abstract away here
for simplicity. The breaking system sends signals to the vehicle to regulate the
acceleration and breaking, based on vehicle velocity, distance to obstacles and
traffic signals. The velocity information is provided as a feedback from the plant,
the distance information is obtained from sensors, while the information about
traffic lights is obtained from the perception module. The perception module acts
as a classifier over images captured with a camera. Such systems are already
employed today in semi-autonomous vehicles where adaptive cruise controllers or
lane keeping assist systems rely on image classifiers providing input to the software
controlling electrical and mechanical subsystems [6]. Suppose we want to check
that the system satisfies the following safety property: the vehicle will not enter an
intersection if the traffic light at the intersection turns red.
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Fig. 10.3 Example

We write the system as the composition: BreakingSystem||Vehicle||NN. Each
component has an interface that specifies its input and output variables (ports), and
their parallel composition is formed by connecting components via ports. We write
the property as follows (using Linear Temporal Logic, LTL, assuming discrete time):
globally (G) if the semaphore (input image x) is red, then eventually (F), within 3 s,
the velocity becomes 0:

P :: G((x = red) ⇒ FT <3s(velocity = 0))

In practice, we would also need to encode in P the assumption that the distance
to traffic light is less than some threshold, but we simplify here to ease the
presentation. We are thus interested in checking that the system satisfies property
P , written as S |= P . We decompose the system into two subsystems: M1 =
BreakingSystem||Vehicle and M2 = NN and define two assume-guarantee contracts
C1 and C2 for the two subsystems. Suppose (part of) the contract for M1 is:

C1 :: G((Class = red) ⇒ FT <3s(velocity = 0))

The contract states that assuming the input (Class) to the subsystem M1 is red
then the vehicle is guaranteed to stop in at most three time units. We can further
decompose the verification of M1 into the separate verification of its components
using additional contracts and perform component-wise verification. It remains to
formally characterize the input–output behavior of the DNN in a contract that can
be used in the compositional proofs. This is a difficult problem because DNN are
known to be vulnerable to adversarial perturbations [15, 20]: a small perturbation
added to an image that shows a red semaphore might lead the NN misclassifying it
as having Class = green.

To address the problem, we use clustering over the training set (see Sect. 10.3)
to automatically find regions where the network is likely to be robust to adversarial
perturbations. The result is a finite set R of well-defined regions, where a region
ρ ∈ R is characterized by a pair (c, r); c is the centroid and r is the radius of
the region. We then use a verification tool (such as Reluplex) to check that, for all



10 Compositional Verification for Autonomous Systems with Deep Learning. . . 195

inputs x within each region, the NN classifies them to the same label as that of
known inputs (and of c):

Cρ :: |x − c| < r ⇒ Label(x) = Label(c)

The training data available and the amount of noise could impact the validity of
the check. In such cases we may need to refine the contracts to include Bayesian
estimates of uncertainty [17]. Let Uncert (x) denote the uncertainty in the output of
the NN for an input x. We can then refine the contract to check that the label is as
expected and the uncertainty level is below a threshold. The DNN’s safety contract
C2 could then be the union of all the constraints of the form Cρ that are proved valid.

We are now ready to perform the compositional proof: if M1 |= C1 and M2 |= C2
and furthermore C1 ∧C2 ⇒ P , it follows that M1||M2 |= P ; thus, we prove that the
whole system satisfies the property, without composing its (large) state space. This
proof can be performed with standard model checkers.

10.4.1 Run-Time Monitoring and Control

We note that the evidence we obtain from the analysis is conditional; we can
only prove that the property holds for the region contracts that we found to be
safe. The information encoded in the contract assumptions will need to be used
to synthesize run-time guards that monitor inputs that fall outside the conditions
and instruct the system to take appropriate, fail-safe actions. Note also that this
compositional approach enables separate verification of individual components: we
can thus replace some of the verification tasks for individual components with
testing or simulation, which will increase scalability but will give only empirical
guarantees.

Furthermore, if the system contains adaptive components, the verification of
those components can be done at runtime, whereas the static components only need
to be checked once, at design time. Adaptive learning-enabled components pose
additional challenges over time. We can again use model uncertainty to identify
situations in which the adaptive learning-enabled system is not confident about its
decisions, and take appropriate actions in such cases.

10.5 Conclusion

We presented a compositional approach for the verification of autonomous systems.
The approach uses assume-guarantee reasoning for scalable verification and can
naturally integrate reasoning about the learning-enabled components in the system.
We are working on evaluating the proposed approach on various simulation and real
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autonomous platforms, including self-driving cars (discussed briefly in Sect. 10.4),
autonomous quadcopters, and airplanes. These case studies cover perception,
decision making, control and actuation of autonomous systems, and they include
safety-critical cyber-physical components as well as DNN components.
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