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The Aerodynamics of Flight
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Symbols
a vortex core radius Sy wing disc area
A wake area T stroke period thrust
Ao area swepl by wings u local velocity vector
AR =2bjc  aspect ratio urom velocity components in x,y,z
b wing semi-span u, local wing section velocity
c wing chord u, winglip velocity
q closed curve v mean, steady velocity
C..Cp lift, drag coeflicient r, 2nd moment of virtual mass
€1 Cq force coefl./unit length w; induced velocity
Cr thrust coefficient w body weight (= mg)
D drag force
D’ drag/unit length o angle of attack
e aerofoil efficiency P induced angle of attack
S feathering parameter 2q body angle
F force vector stroke plane angle
g gravitational constant 3 wing positional angle
H=hb dimensionless height o small change
1 fluid impulse ¢ ratio of projected wake areas
J advance ratio n propulsive efficiency
ko arbitrary constant 0 glide angle
k reduced frequency, basedon half 2 wavelength
chord u viscosity
K=J""! flapping frequency parameter v kinematic viscosity
! linear length scale é vorticity
L lift force P density
L lift/unit length g wing shape factor
m body mass spatial wake correction
m, 2nd moment of mass gy correction 10 momentum jet
n frequency (Hz) T downstroke ratio
P power temporal ‘wake correction shear
g=1/2pU? dynamic pressure stress
Q0=W/S wing loading ¢ stroke amplitude
r spanwise location Dur fore/hind-wing phase angle
turning radius w radian frequency
R total wing length r circulation
vorlex ring radius | %S total circulation
R dimensionless ring radius © proportional feathering
Re Reynolds number A dimensionless amplitude
s wake element spacing (0] roll angle
surface coordinate Q reduced [requency, based on
S surface area semi-span

1 Introduction

1.1 Flight in Animals

It is usually estimated that there are around 10° extant animal species in the world,
of which approximately three-quarters are insects. The Pterygota, or winged insects,
comprise the vast majority of these species, and save for the orders of lice and
fleas, nearly all members of this subclass have functional wings at some stage
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during their life cycle. Flight has evolved quite independently in the birds (class:
Aves), numbering around 8000 species, and in bats, whose 850 or so species,
although less conspicuous, are the most numerous, and second most widely
distributed order of the class mammalia. In terms of number of species, nonflying
animals might therefore be considered unusual, and the capacity for flight seems
to confer certain advantages, if measures of success include the degree of dispersal
and speciation.

One of the chief benefits appears to be a reduction in the cost of purposefully
moving mass from A — B, and a dimensionless cost of transport, defined as the
energetic cost of moving a unit weight a unit distance, is indeed generally lower
for a flying animal of any given mass, for those animals which must support their
body weight. The favourably low cost of transport is accompanied by a high rate
of energy expenditure per unit time, and there are considerable incentives to
improve the efficiency of flight, when it occurs. The adaptations are physiological,
structural, behavioural and developmental, as well as aerodynamic, and at once
place severe constraints on the operating range of the animal, while at the same
time driving the evolution of a remarkable diversity of forms. It is one of the
implicit assumptions behind much of the animal flight literature that energetic,
and ultimately, aecrodynamic considerations have a strong effect on the structure
and ecology of the individual. It will be the only consideration in this chapter,
others in this book supplying the remaining components.

In contrast to most instances of aquatic propulsion, fluid dynamic forces in
flight must also support the body weight, and the (generally) nonlinear interaction
between these two requirements of lift and thrust generation leads to certain
interesting complications in the analysis. In common with the previous chapter,
the absence of continuous rotating mechanical devices has resulted in the develop-
ment of sophisticated reciprocal oscillating systems. The consequences of the
periodic accelerations of the beating wings are profound; large inertial forces,
significant unsteady effects and gross departures from standard linearised models
may result. The degree of this departure, as measured by the relative frequency
and amplitude of the beating motion, forms the basis of organisation of the chapter.

1.2 Omissions

The discussion will be focussed on animals that are capable of sustained flapping
flight and weight support. The aerodynamic requirements place considerable
demands on the mechanics, physiology and behaviour, and the responses of actively
flying animals to these pressures allows some kind of unified treatment of the
adaptations. Flying squirrels, lizards, frogs, snakes and fish could be considered
as low aspect ratio gliders, but will not be specifically mentioned. The evolution
of flight will not be covered, and papers by Caple et al. (1983), Rayner (1985a,
1986), Norberg (1985) and Pennycuick (1986, 1988) should be consulted for
introductions to the vigorous bird and bat flight evolution debate. The usual, but
somewhat arbitrary cutofl is also applied so that human-powered and human-
designed flight systems are ignored. Since this book specifically concerns animal
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mechanics, the fluid dynamics of plants and inarimate objects in the environment
are excluded. Fortunately, there are several fascinating books which deal with such
topics, for example, those by Hertel (1966), Vogel (1981), Lugt (1983), and
Ward-Smith (1984). A number of excellent reviews of various aspects of animal
flight have been published in recent years. The papers in Ellington (1984, 1-VI)
are the current point of reference for research in insect flight aerodynamics.
Pennycuick (1989a) provides clear explanations and advice on many practical
issues in bird flight analysis. Aspects and applications of mechanical models of
bird and bat flight have been reviewed by Rayner (1986, 1988) and Norberg and
Rayner (1987), and a thorough account ranging from theoretical to ecological
studies of vertebrate flight has been published by Norberg (1990).

1.3 The Modelling Enterprise

It is one of the theses of this chapter that a nontrivial understanding of animal
flight must be based on some kind of aerodynamical model. Ultimately, such a
model must itself be based on the known physics of the flow, which, for our
purposes, reduces to the application of Newton’s laws to an incompressible,
homogeneous fluid. Specification of the initial and boundary conditions is, in
principle, sufficient for the determination of the velocity and the pressure
everywhere in the flow, by direct solution of the Navier-Stokes (NS) equations.
However, even if we disregard the enormous problems in achieving adequate spatial
and temporal resolution, the results of such an effort may not be particularly useful
because it would not necessarily be obvious how they would generalise to other
conditions, and the physical processes most responsible for some observed
phenomenon in the flow field would still not be evident. We would only know
that the NS equations produced it, but we already knew that since that is the
system we programmed in the first place, and no physical insight has been gained.
An essential part of the scientific endeavour involves the deliberate abstraction of
some subset of the full physical system and the construction of a model based
upon the judicious selection of appropriate simplifications. A useful model makes
testable predictions, the success or failure of which provides new information
concerning the initial assumptions. Parametric tests allow the relative significance
of the model components to be assessed, and refinements in the model are derived
from better physical approximations.

2 Some Nondimensional Numbers

2.1 Lift and Drag Coefficients

Regardless of the complexity of the flow or of the surface over which it is moving,
there only two basic mechanisms by which a force may be communicated to a
body moving through a homogeneous fluid. They are: (1) the pressure, p(s), and
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(2) the shear stress distribution, t(s), over the surface. By convention, the resultant
force, F, integrated over the whole surface, is decomposed into two orthogonal
components, L= Lift, the component of F normal to the freestream velocity, U,
and D = Drag, the component of F paraliel to U. The dimensionless coeflicients
of lift and drag are then
L D .
C,=—, and, Cp=—1, (1
Y S
where q, is the dynamic pressure and S is the surface area. The equivalent sectional
lift and drag coefficients are the normalised forces per unit span, at a given chord, ¢:
L D’
c=—, and, c,=—. (2
qC 4ot
The total drag force is the sum of the contributions from the normal pressure and
tangential stresses,

D=D,+D,. A3)

D, is known also as the form drag. When there is a mean lift on the body, it is
conventional to express the sum of D, and D,, minus the lift-induced drag, as the
profile drag, D,,. This decomposition of F is quite simple in conventional
acronautical applications involving steady motion in a uniform flow, but is less
straightforward, and not necessarily particularly helpful, when the direction and
magnitude of the fluid velocities at the surface vary greatly in space or time.

2.2 Reynolds Number

The Reynolds number, Re = Ul/v, is the only dimensionless parameter required for
specification of the dynamics of incompressible flow fields with uniform density,
for a given set of boundary and initial conditions. Re emerges directly from the
NS equations governing the motion of a fluid, when the pressure, inertial and
viscous terms are in equilibrium. The triply-infinite number of possible solutions
where U, I, and p (v = u/p) are chosen such that Re is unchanged, are said to be
dynamically similar, determined by the ratio of the inertial and viscous terms. A
dimensionless drag coefficient, as defined above, will be equal for geometrically
similar bodies at the same value of Re. The chord Reynolds number, Re, ranges
from =~ 10! for the smallest insects considered here, to = 10° for the larger birds,
a difference of 5 orders of magnitude. Certain aspects of the fluid mechanics can
be expected to vary considerably across this range.

2.3 Reduced Frequency

While dynamical similarity under similar boundary and initial conditions may be
assured for different flows when Re is of the same order, other dimensionless
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parameters enter the problem when specification of the boundary and initial
conditions involves a third parameter, in addition to U and [, such as a frequency,
_for example. It will prove convenient to define reduced frequencies based on the
mean half-chord, ¢/2, and on the semi-span, b, as:
= , = wb . 4)
2U U
k and Q are related via the aspect ratio, AR = 2b/c, by Q = kAR. The circular
frequency w is an independent kinematic parameter (it does not vary simply as a
consequence of variations in the steady freestream velocity, U or the lengthscale,
l) and dynamical similarity of any two flows requires that both Re and k (and
when appropriate, Q) be the same. The frequency parameter Q is proportional to
the relative magnitudes of the spanwise and streamwise components of vorti-
city, and is a measure of the departure from the quasi-steady limit, when
k, Q—0.
The spanwise variation in amplitude of a wing beating at frequency » (in Hz),
may be taken into account, defining the ratio K, with ¢, the wing stroke amplitude,
and r, the spanwise distance from the wing root to the point of interest, as

2o
==

Its inverse, J = K ™!, is the advance ratio discussed by Ellington (1984, III), when
r= R, the wing length, and so J is the ratio of the forward flight velocity to the
mean wingtip velocity. We see from Eq. (4) that J = n/(¢€), and so for typical
wingbeat amplitudes where ¢ = n/2, J = 2/Q.

(5)

3 Classical Aerodynamics
and the Performance of Animal Wings

3.1 2-D Aecrofoils

The forces on an aerofoil can be discussed in terms of the vorticity and circulation
of the fluid, either on the aerofoil itself, or in the wake (Fig. 1). The vorticity of a
fluid element,

§=Vxu, (6)

is equal to twice the local angular velocity of the fluid. There may be components
of this in all space coordinates, and so it is a vector quantity. When & # 0, the
flow is rotational. The circulation, I, is the line integral of the fluid velocity around
any closed curve, C,

I'= —§u-dx. (7)
c
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An intuitive, physical interpretation of this quantity is less obvious than for g, but
when combined with the definition of the vorticity, it may be thought of as a
measure of the strength of &, integrated over the area enclosed by C. The Kutta-
Joukowski theorem of lift states that the lift per unit span, L, of a body is directly
proportional to the circulation:

L =pUT. 8)

It just remains to select a value of I'. For a given U, there is a unique value of I’
which ensures that infinite fluid velocities are not required at the trailing edge.
This condition, when the separation point occurs exactly at the trailing edge, is
known as the Kutta condition, and it effectively determines the lift on the aerofoil,
which, for the purposes of lift calculation, may be replaced by a point vortex
having this value of T.

Kelvin's circulation theorem, which follows from a consideration of Eq. (7) in
a homogeneous, incompressible, inviscid fluid, states that the circulation around
a circuit, C, will have the same value when measured over the same fluid elements
comprising C, at any time, as C is followed in the flow,

br =0. 9)

Dt
Let us define a large box around an aerofoil at rest, around which I is initially
zero (Fig. 1). As the aerofoil begins to move, accelerating to some steady finite
velocity, extremely high velocity gradients, and hence &, are generated at the trailing
edge as the flow adjusts and the separation point begins to move towards the
trailing edge. While the aerofoil moves on, the vorticity will be left behind, close
to where it was created. The circulation, I', on the aerofoil must be balanced by
an equal and opposite circulation, — I, in the wake, according to Eq. (9). When
the Kutta condition is satisfied and the aerofoil has attained a steady lift, determined
by Iy, the flow leaves the trailing edge smoothly and no more vorticity is shed
into the flow. Where it started, the shed vorticity will tend to roll up into one
concentrated vortex, with circulation I'y,= —TI'y, and at all times, the total
circulation, defined over the whole box, remains at zero. The lift on the aerofoil
can be calculated from the vorticity in the wake according to Egs. (6), (7) and (8).
Further thought experiments along these lines show that any changes in lift on
the aerofoil will necessarily be accompanied by thc shedding of vorticity in the
wake, and so knowledge of the strength and distribution of vortex elements in the

Fig. 1. The generation of bound (I'y) and wake
(I"..) vorticity for an impulsively started aerofoil
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wake may be used to deduce the circulation and forces on the wing. Batchelor
(1967) can be consulted for an introduction to the basic fluid dynamical concepts.

Thin Aerofoil Theory. When the aerofoil thickness and camber (degree of curvature)
are everywhere small, and the angle of attack, «, is small, the aerofoil can be modelled
as a vortex sheet along the chord line (defined as the straight line connecting the
leading and trailing edges), where the total circulation, I', is the value required to
meet the Kutta condition at the trailing edge, and streamlines flow around the true
cambered profile. Simple expressions may be derived for the lift coefficient and the
centre of pressure showing that the centre of pressure is at the quarter chord point,
and that the lift is a linear function of angle of attack. If the aerofoil is symmetric, the
line of ¢,(a) passes through the origin. Agreement with wind tunnel data for a real
symmetric aerofoil is good up until a critical value of «, when the flow separates and
the aerofoil stalls. When the aerofoil section shape is more complicated, the surface
geometry can be defined with a number of vortex panels; the numerical solution for
the circulation distribution required to satisfy the Kutta condition at the trailing
edge proceeds along the same principles as before. Concise descriptions of these
techniques appears in Anderson (1984), and a modern collection of aerofoil data
may be found in Althaus (1980).

Reynolds Number, Flow Separation and Transition to Turbulence. Thus far,
attached, high Re flows at small « have been implicitly assumed. In practice, for Re
< 108, aerofoil performance is completely dictated by the comparatively poor
resistance to separation of the laminar boundary layer. The physics of separated
flows is a research topic unto itself; Lissaman’s (1983) fine review contains discussion
of the effects of flow separation on the performance of low Re aerofoils, Cheng and
Smith (1982), and Cheng (1985) have reviewed and extended the theoretical analysis
of laminar separation, and aspects germane to animal flight are considered by Lee
and Cheng (1990). Depending on the presence or absence of [low separation and
reattachment, on the location of these points on the aerofoil surface, and on the
occurrence of transition to turbulence in the attached boundary layer, or in the
separated free shear layer, a broad spectrum of behaviour can be observed over a
critical range of 10* < Re < 10°. Two examples serve to illustrate the problem.
Figure 2a shows the superior lift/drag polar of a cambered thin plate over both a flat
plate, and a thin aerofoil at Re, =4 x 10%. Following a threefold increase in Re,
(Fig. 2b), the thin aerofoil now performs best, and with appreciably higher ¢, than
any of the cases at the lower Re,. The Re_of a bird with a mean chord of 0.1 m, gliding
at 10ms™~! would be about 7 x 10 It is somewhat exasperating to note how, from
the theoretical point of view, animal locomotion often appears to occur in the least
convenient of all possible parameter ranges, as also noted in Chap. 2. Although
laminar, attached flows can be maintained over at least portions of carefully
designed aerofoils (cf. Liebeck 1978) at the top of the Re range above, they may be
considerably disrupted by small disturbances in the flow. It is common to
deliberately introduce a small perturbation at the desired transition location, so that
the resulting turbulent boundary layer, by virtue of the increase in momentum
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(4 Re=ax10* 14  Re=1.2x10°

Fig. 2a,b. Lift-drag polars for
smooth aerofoils and flat plates at
different Reynolds numbers.
(After Jones 1990 and Schmitz
1960)

J
0.6

transfer from the freestream, is less unstable and more likely to withstand adverse
pressure gradients along the aerofoil. Similarly, transition to turbuler:ce in the free,
separated shear layer increases the likelihood of downstream reattachment, when a
laminar separation bubble results. For natural flight at moderate values of Re,
turbulent flow might be the default condition, when small nonuniformities in the
surface geometry (a rumpled feather) or equally small amounts of turbulence in the
freestream (a gust of wind) are not unusual. Other factors influencing transition
include the geometric shape of the aerofoil surface, the presence of auxiliary lifting
elements, translational and rotational accelerations of the surface, and even the
previous steady state of the boundary layer, as demonstrated in Fig. 3, where
considerable hysteresis is observed for ¢,(a) of a thick and thin aerofoil section at
Re, = 10%. Birds and bats, operating in the 10* < Re < 10° domain, will encounter
and generate flows which are very sensitive to changes promoting or inhibiting
separation and/or transition to turbulence, and the performance of their wings could
fluctuate accordingly.

14—

12 Thin, 12.5% \

1.0

0.8

¢ -
0.6
04
Q

Fig. 3. Hysteresis in ¢,(2) curves for thin and 0.2k Thick. 20%
thick aerofoils at Re = 10°. The formation and )
bursting of laminar separation bubbles is 0 | | 1 ]

responsible for dramatic fluctuations in the 8 -4 0O 4 8 ({2 16
lift. (After Jones 1990 and Schmitz 1960) Q(degrees)
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As Re falls below 102, transition is less likely, and fully laminar flow may be
maintained at small «. If the laminar flow does separate, the bubble length is likely to
exceed the chord length, in which case reattachment cannot occur. Due to the lack of
human-scale engineering applications, available technical data on lifting surfaces at
Re <10 is quite rare, so the known behaviour of fluids at these Re in other
circumstances must be cautiously applied to aerofoil and flat plate geometries. Van
Dyke (1982) illustrates many fundamental low-Re fluid flows, and Lugt (1983) has
discussed low Re flow over lifting bodies, including the results of some interesting
numerical computations, showing how the distribution of vorticity differs in
strongly separated flows at low and high Re. Intriguing flow visualisations of
impulsively started 2-D aerofoils appear also in Hertel (1966), where Re, is probably
around 10°.

Animal Aerofoil Sections. Figure 4a shows the approximate wing sectional geome-
try for a bird, a bat, and two insect species, covering a range of Re, from 10° to 102.
All sections have appreciable camber, and the transition from smooth profile to flat
plate with decreasing Re, is consistent with the performance noted in Fig. 2. The
pigeon section profile tapers into a very thin, extended trailing edge, bearing some
resemblance to the trailing edge extensions added to low Re, (x5 x 10%), high lift
acrofoils analysed by Ito (1989). The thin, tapered section is also similar in
appearance to certain of the high-lift aerofoil sections reverse-engineered by Liebeck
(1978), particularly when transition occurs close to the leading edge. By contrast, the
bat wing membrane and supporting structures appear more like a cambered flat
plate. The elastic wing membrane deforms in a passive aeroelastic response to the -
fluid pressures during flight, but the degree of camber may be altered by changing
the tension in the membrane. In similar experiments on the gliding flight of both

(i)

(ii)

(iii)

{iv)

/1))

1 ]
005 040 045 0.20
b Cq

Fig. 4. a Wing sections of two vertebrate and two insect species, spanning a range of Re
(10° = Re 2 10°%). Based on: (i) Pigeon (Columba livia) (Nachtigall 1979). (ii) Dog-faced bat
(Rousettus aegyptiacus) (Pennycuick 1973). (iii) Dragonfly (Aeschna interrupta) forewing (Newman
et al. 1977). (iv) Hoverfly (Syrphus balteatus), showing smooth envelope profile used in comparison
tests by Ress (1975a.b). b Section lifi-drag polars for a modified Wortman aerofoil (Ito 1989),
and modei» based on sections (i) and (iii)
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species (Pennycuick 1968, 1971a), Re, can be calculated as 2 x 105 for the pigeon,
and 3 x 10 for the bat at the preferred gliding speeds, an interesting correspondence

_with the data in Fig. 2. Both insect wing sections have noticeable corrugations,

which have been interpreted as promoting transition, separation and reattachment
of the boundary layer for the dragonfly at Re, = 10* (Hertel 1966; Newman et al.
1977). The fluid dynamics must differ somewhat at the lower Re, = 4.5-9 x 102 for

the hoverfly profile, for which Rees (1975b) found that lift/drag polars were similar to

those for an aerofoil shaped like a smooth envelope around the corrugated sheet. In
this case, the primary function of the corrugations is seen as a structural adaptation
for maintaining spanwise stiffness withittle added wing mass inertia, and without
any great aerodynamic performance reduction.

Figure 4b compares the section polars of a modified high-lift aerofoil with
profiles based on sections (i) and (iii) for the pigeon and dragonfly. The performance
of the pigeon section is quite respectable for the Re, , and that of the dragonfly is
rather extraordinary. Both (L/D),... and the slope of ¢,(c,) are high, and the kink in
the curve of the dragonfly section was attributed to the development of a large
separation bubble entirely covering the corrugations at « = 8°. The benefits of this
separation bubble appear to include extended high lift regions at higher a, and the
accessibility of a range of c, at almost constant ¢, Manoeuvrable, hunting flight
performance might thus be improved. Confirmation of these results would be
reassuring, since Azuma and Watanabe (1988) did not find such ¢,(c,) profiles in tests
with miniature gliders constructed with real dragonfly hindwings.

3.2 Finite Wings

The pressure difference cannot be maintained at the tips of a finite wing, and a
rotational motion is produced as the fluid flows around the tips. The result is thus a
streamwise component of &, which rolls up into two trailing vortices. A vertical cut
taken through the wake (Fig. 5a), illustrates the mean downward flow induced by
the tip vortices. The effective angle of attack is correspondingly reduced (Fig. 5b) and
the vector sum of the freestream velocity and the induced downwash velocity w;,
gives rise to a local velocity vector which is no longer aligned with U. Now, the
local lift vector, defined as the component of the force normal to the local velocity,
has a backwards component compared to the original; it adds to the total drag.
This drag component is called the induced drag and is entirely due to the influence
of the vortex-induced motion. Since these vortices were produced as a result of
the pressure difference across the wing, the induced drag is an inevitable con-
sequence of the lift. The total drag on a finite wing can now be expressed as the
sum of the skin friction, pressure and induced drags [cf. Eq. (3)].

D=D,+D ,+D, (10)

D, is the drag due to viscous shear stress. The fact that the integrated sum of D, over
the wing surface is nonzero may also be traced to the effect of viscosity and flow
separation, and the two terms are often lumped together as D,,,. Obviously, D,
varies with Re, but it varies also with anything causing measurable changes in the
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b

Fig. 5. a Wingtip trailing vortices behind a fixed wing in steady motion. y is the spanwise distance
along the quarter chord line, and the total span is 2b. The velocity profile in the vertical plane
cut in the wake shows the spanwise distribution of velocity normal to the direction of motion
wi(y), due to the vortex system. b The effect of the vertical velocity w; is to reduce the effective
angle of attack and reorient the lift vector

boundary layer flow. It is extremely hard to calculate accurately for all but the most
simple flows. In practice, it is frequently estimated from empirical coeflicients
derived from wind tunnel tests. The remaining component, D;, depends on the
distribution of wake vorticity, which in turn depends on I'(y).

The Lifting Line. The action of a wing with an arbitrary, continuous I(y)
distribution can be analysed as a lifting line composed of an infinite number of
coincident vortex filaments of different strengths. The wake is therefore also
composed of an infinite number of line vortices and so initially has the form of a
vortex sheet shed at the trailing edge. The induced drag may then be calculated, for
any U, given only the form of the circulation distribution on the wing, I'(y). Apart
from the requirement that I'(—b)=T(b) =0 at the wingtips, we are free, in
principle, to choose any convenient I'(y). One possible form is an elliptic
distribution, when an expression for Cp, can easily be derived,

_ <

= 11
enAR (th

D,
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where e < 1 is the aerofoil efficiency factor. e = | when the loading is elliptic, which is
therefore the optimum load distribution for minimum wake energy loss for a given

. lift on a planar wing in steady motion. Elliptic loading can be achieved by

constructing a wing with an elliptical planform. Alternatively, the local wing section
profile may vary along the span, as may the local wing twist. In practice, small
deviations from elliptic loading have a rather small influence on the induced drag,
and high AR, rectangular wings work tolerably well. for example. Intuitively, it
seems perfectly reasonable that Cp, should be proportional to the square of the
lift, and inversely related to AR, since it is a physical consequence of the pressure
difference at the wingtips. A more complete analysis would note that there are
conflicting requirements between minimising induced drag and mean bending
moments (long/short span), and between reducing both skin friction drag and
maintaining sufficient structural strength (small/large chord). Jones (1990) has
reviewed these requirements for fixed wings and reports that the induced drag
may be reduced by about 10% over the elliptic wing, for the same integrated
bending moment, by using a slightly longer wing with a more pointed tip. There
is much room for further research combining both structural and aerodynamic
considerations.

Applications of the Steady, Straight, Lifting Line. Lifting line theory provides the
foundation for a large number of models in aeronautics, natural or otherwise. The
numerical solution of a lifting line problem for arbitrary I'(y) distributions is quite
straightforward, and instead of describing any particular case in detail, it is only
necessary to understand the basic recipe. A wing is first divided into a number of
strips at equally spaced spanwise stations, and an initial ['(y) is assumed. 2; is
calculated at each station, y,, and f[rom the geometric angle of attack at that station,
the effective angle of attack is given by «,, = — a; (Fig. 5), and the section lift
coefficient is determined from empirical curves for that profile; any nonlinear ¢,(2)
may thus be used. Given c,, a new value of T is calculated. If it differs substantially
from the old value, these steps are iterated until convergence. This algorithm is
commonly used for high aspect ratio, straight wings, and derivatives of it have been
widely applied to animal flight. However, it is known to break down whenever
significant spanwise (three-dimensional) flows occur over the wing, in which case
the validity of the use of 2-D sectional lift coeflicients becomes questionable.

A related technique, similar in spirit to the vortex panel analysis in 2-D, is the
lifting surface method. The wing is covered by regular arrays of vortex filaments,
whose strengths vary with both x and y, which, together comprise a lifting surface.
The induced downwash at any point on this surface is an integral of the vorticity
over the lattice and the wake, and the system is solved so that the fluid velocity is
everywhere tangential to the lifting surface. A variation on this theme is to cover the
wing with a lattice of horseshoe vortices. The normal velocities are given by the
velocity induced from all the filaments in the vortex lattice, and the solution
proceeds as before. These are still essentially two- dimensional techniques, but the
extension to 3-D flows and geometries is relatively straightforward in principle.
They are variously known as vortex doublet or panel techniques: the surface is
covered with a network of vortex patches, panels or lifting lines, and at control
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points on the body surface a system of linear algebraic equations is solved such that
normal velocities are zero. The problem of mapping a complicated surface with an
appropriate lattice mesh is often nontrivial in itself, and extremely sophisticated
panelling algorithms have been developed for mapping arbitrary and/or time-
varying geometries.

Animal Wing Systems. The bird, bat and insect wing planforms of Fig. 6 illustrate
half of the challenge of animal flight aerodynamic analysis: how can the classical
analysis be adapted and modified for application to these diverse forms? The second
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Fig. 6 (i)-(vi). The wing planforms of various birds, bats and insects. (i) Diomedea sp. and (i)
Apus apus, redrawn from Herzog (1968) to the same scale. The wing planform of Apus is strikingly
similar to the lunate tail shape discussed in Sect. 5.5, and in Chap. 2. (iii) Plecotus auritus
and (iv) Otomops martiensseni, traced from photographs in flight by U. Norberg, in Norberg and
Rayner (1987) Scale bar 0.1 m. (v) Aeschna palmata, slightly modified from shadowgraph appearing
on front cover of Somps and Luttges (1985). Scale bar = | cm. (vi) Encarsia formosa. from
Weis-Fogh (1973). Scale bar ~0.5mm. Re, during flapping flight = 1.5 x 10* and 15 for Aeschna
and Encarsia, respectively. In the entire figure, the wingspan ranges from 3.4 m in the Diomedea.
to l.4dmm in Encarsia
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part is to satisfactorily account for the fact that most of these wing systems
experience significant oscillations for most of the time.

There have been a number of attempts to measure the planforms of animal
wings in order to find general expressions for the wing shape, either to compare them
with theoretical predictions, or for later use in strip-wise aerodynamic analysis.
Oehme and Kitzler (1975), for example, measured the spanwise chord distribution of
a number of species of birds and found that most could be approximated by a single
general function, which was not an ellipse, but could be approximated by one for
analytical convenience. Weis-Fogh (1973) found that many insect planforms could
be approximated by a small number of simple functions, and Ellington (1984, 11)
has since measured the moments of mass and area for 18 insect species, with the
remarkable result that the normalised wing shapes were found to lie within 59 of
Beta distributions determined by one single parameter. The implication is that some
strong, but as yet poorly understood, set of constraints is acting to produce such
uniformity. Tantalisingly, reasonable agreement was also noted for the humming-
bird Amazilia, and for the bat, Plecotus. It is likely that more is to be learned in this
area.

One can also determine the wing properties empirically by measuring the
C.(Cp) polar curves in wind tunnels for the complete wings, or three-dimensional
models. The drag measurement therefore includes the induced drag, D;. Figure 7 for
insect wings shows that, as Re, decreases, the maximum possible lift coeflicient
decreases and the sharpness of the stall decreases also. In fact, the Drosophila wings
could hardly be said to stall at all, the drag simply continues to increase, up until
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Fig. 7. Lift-drag polars for whole insect wings: Locust, Schistocerca gregaria, {forewing) from
Jensen (1956); crane-fly, Tipula oleracea, from Nachtigall (1977); fruitfly, Drosophila virilis from
Vogel (1967); bumblebee, Bombus terrestris, from Dudley and Ellington (1990b). Open and closed
circles are for flat and cambered wings respectively
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a = 50°. At low Re,, wings are less efficient at generating lift, but are also much less
sensitive to changes in «, and will continue to function at very large «. Obtaining
wind tunnel measurements of bird wings that are at all representative of the free
flight performance is hampered by the complicated shape and response of the wings
and feathers, and Tucker (1987) has shown that polar curves of fixed bird wings may
look very different from those calculated from wind-tunnel tests on live gliding birds,
due to active alteration of span and local section profiles. These difficulties would be
even more acute for bat wings.

In general, animal wings are not planar, and a wing with fore or aft sweep
will also be nonplanar (with respect to the freestream) when placed at some nonzero
angle of attack. Cone (1962a) showed that certain nonplanar lifting systems had
lower induced drag than the classical elliptically loaded planar form, and the
efficiency factor e in Eq. (11) can similarly be increased, up to 1.07 behind swept
wings (Burkett 1989). The large local upwash velocities associated with the sweep
necessitate high values of wing twist near the tips to avoid stall there, but this
effect can also be mitigated by changes in the local lifting line curvature (Cheng
1976), a geometric adaptation which does not depend on «, and which appears to
have been adopted by the swift in Fig. 6(ii). Further discussion of the lunate
planform in oscillating wings can be found in Chap. 2 and briefly in Sect. 5. Induced
drag reduction by slotted wingtips or wingtip sails has been reviewed by Spillman
(1987) and Jones (1990). The mechanism is to extract useful energy from the wingtip
vortex by immersing smaller aerofoil sections in the rotating flow at the appropriate
angles of attack. The cost-benefit analysis here is complicated, since the observed
drag reductions could also be achieved just by increasing the aspect ratio, but it
appears that induced drag reduction is effective for a wing limited in span, and
for a given structural weight, when the individual winglets have variable incidence.
The separated primary feathers of many bird species automatically have this
property by virtue of their passive aeroelastic response to the instantaneous local
airflow.

The presence of the body between the wings_may be considered as another
instance of nonplanarity, but the interference drag between the wings and body
is probably small, and is always neglected. If there is no vortex shedding at the
wing/body interface, the pressure difference across the wings is maintained across
the body, whose planform area between the wings is thus included in the wing
area. Otherwise, when the wing chord is small at the base, there must be
considerable vortex shedding at the root, which will be reflected in the wake
structure. The rest of the body is usually assumed to do no useful aerodynamic
work (but cf. Csicsaky 1977), and appears instead as an extra component in the
drag, the parasite drag, D,,,.

Given these basic aerodynamic tools, and an understanding of the wings as
conventional aerofoils, we are now in a position to discuss their practical operation,
which we do based on three kinematic regimes of gliding, forward flight, and
hovering. These correspond roughly to domains of k = 0, finite, nonzero k, and
k = oo, respectively, though it will become clear that the analytical domains do
not exactly respect these boundaries.
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4 Gliding

4.1 Basic Principles

Figure 8 shows the force balance on a body gliding at constant speed, U, at an
angle 6 with the horizontal. The lift and drag forces are

L=mgcosf, D=mygsin0, (12)
and the glide angle is determined by the ratio of lift to drag

—tan-! 9)
0 =tan (L' (13)

The total drag on the body is the sum of the pressure and skin friction drags with
the vortex-induced drag Eq. (10). From Eq. (11), the induced drag is

L2
“T1pU%%n’
and, if the skin friction and normal pressure drags on the wings and body are
combined and expressed as a profile drag coefficient (Sect. 2.1), the total drag is

(14)
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The first term increases with U2, while the second term, representing the energy
lost in the vortex wake, decreases with U2. At some point therefore, there will be
a value of U,U,,, at which the total drag is minimised; if L~ W is fixed, and
ignoring variations in b, S and C,, , this point is reached when

L 1/2 1/4
oo ()
pb SCp,,.€m

Lighthill (1975) noted that this defines a speed above which gliding is stable when
any further increases in U will increase the magnitude of the first term in Eq. (15)
which will consequently tend to reduce U. On the other hand, when U < U, the
second term (induced drag) dominates, and increases in U will reduce the total
drag, so stable gliding is not possible. As L~m, U, will decrease as the mass
decreases, and a simple dimensional analysis of Eq.(16) shows that U, ,~ "2,
where | is a linear dimension. Geometrically similar gliders with linear dimensions
different by a factor of 10, should have characteristic gliding speeds different by

D=1pUSC (15)

ITI = 1Dl

L=mg cose

D=mg sine
Fig. 8. The force balance on a bird gliding at constant 0 -4
airspeed, U, and glide angle, ¢ p-lone
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a ratio of 10"/2, or just over 3. An alternative perspective of the minimum gliding
speed may be obtained in terms of the maximum lift coefficient, since when @ is
small, L=~ mg [Eq. (12)], we may write

mg =1pU2SC,, or %:%,;UZCL. (17)

Clearly, as U drops, C, must increase in order to still support the weight, but C,
cannot be increased indefinitely, as flow separation occurs above a certain critical
angle of attack (Sect. 3). Equation (16) shows that U, , may be increased either by
reducing the wing area, S, or by reducing the span, b (which could also reduce S),
and so animals gliding at high speed ought to reduce their wingspan, if they are
able to do so. The ratio of weight to wing area, mg/S = Q, is the wing loading,
and 1s of fundamental importance in flight mechanics. According to Eq. (17), any
characteristic flight speed, U*, will be proportional to the square root of the wing
loading. A low wing loading implies low gliding speeds, or, alternatively, lower
freestream velocities are sufficient for continuous soaring.

4.2 Animal Gliders

The lifting line analysis is simple to apply to animal gliders, and permits testable
predictions to be made concerning possible flight speeds, the geometry of the wing,
and scaling laws. There is also some evidence that the lifting line assumptions
behind Eq. (14) are appropriate. Quantitative flow visualisation experiments on
the wake of a gliding kestrel (Spedding 1987a) showed that the wake was indeed
composed of a trailing vortex pair, and calculations of I' from velocity profiles
such as that in Fig. 5 were very close to theoretical predictions. The transverse
wake element spacing and the vortex core diameter were also in accordance with
predicted values, and the inferred values of eand C, were 0.96 and 1.16, respectively.
This value of C, is quite reasonable for the Re.=4 x 10*, and with ex=1 a
circulation distribution close to elliptic is implied. This is consistent also with the
absence of any additional concentrations of § in the wake caused by significant
oI" on the wingspan.

The capacity to substantially vary the wing planform geometry distinguishes
animal wings from many of their human-engineered counterparts, and has been
observed to vary with flight speed, just as predicted in Sect. 4.1, by Pennycuick
(1968, 1971a) in experiments on pigeons and bats gliding in a tilted wind-tunnel.
As U increased from 8ms~! to 22ms ™!, the pigeon was able to reduce b to 37%
of the maximum value, whilst the bat, obliged to avoid collapse of the elastic wing
membrane, could reduce b to only 83% of the maximum as U ranged from 5.5 to
10ms~'. The pigeon’s tail feathers were unfurled at low U, providing an extra
contribution to S. In terms of gliding performance, the two species were otherwise
broadly comparable, with C,,... =13 and 15, and (L/D)_,, =6 and 6.8, for the
bat and pigeon, respectively. Similar measurements have been made by Tucker
(1987), and Tucker and Heine (1990) who reported a C,...of 1.6 at the minimum
gliding speed of a Harris’ hawk.
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Although both locusts and butterflies have been observed to glide frequently,
their range of gliding speeds might be restricted by comparison because of their
. inability to substantially alter b or S during flight.

The larger gliding animals generally operate in an Re domain (10°-10°) where
the estimation of the skin friction and normal pressure drag coefficients is highly
uncertain. In the absence of flow separation, integration of the boundary layer
equations gives a result for the dependence of total friction drag on Re, as

D, =kopU%SRe 12, (18)
where Re, is based on an appropriate streamwise lengthscale, and k, depends on
the shape. A turbulent boundary layer grows faster than a laminar one, when Re,
enters Eq.(18) as Re, !/>. These relationships have been well confirmed by
experiment. The magnitude of the normal stresses on a body with a growing
boundary layer depend on the boundary layer thickness, and so, all other things
being equal, the normal pressure drag coefflicient will also vary with Re; /2 or
Re; '3, The value of D, is in practice determined by the presence or absence of
separation in the flow, and it is usually measured empirically.

The current status of measurement of D, and D, on the wings and bodies of
birds has been discussed by Pennycuick et al. (1988) and Tucker (1987, 1990). The
observed drag coefficients on the wings and body, C;, and C p,..» appear to
decrease across the critical Re range, implying that early transition to turbulence
in the boundary layer either prevents separation altogether, or moves the separation
point further downstream, or assists in its subsequent reattachment. The measure-
ments of D, were extremely sensitive to the smoothness of the body surface, and
drag coefficients were reduced by approximately 15% by Pennycuick et al. when
the feathers were flattened with hairspray, and by 40% by Tucker when a smooth
model with the same contour replaced the dead body. D, depends also on the
local wing section profile and changes in b and S with flight speed, U. The
relationship between any two of these parameters is not simple; in general, both
CLand C,  tend to decrease with increasing U for an intact gliding bird, but
changes in wing geometry as measured by b, for example, introduce considerable
variation.

It is possible that aerofoil operation around Re,,, plays a critical role in the
gliding performance capabilities of soaring birds, but much remains to be accurately
measured and understood. As a practical matter, given the tremendous uncertainties
in the drag coeflicient measurements, an appropriate procedure might be to first
compute a value of Re,, and then use it in a form of Eq. (18), with a suitable value
of ky to account for experimental results when available.

4.3 Gliding Performance

Horizontal Distance Travelled. Maximising the ratio of horizontal distance travel-
led to vertical distance climbed is equivalent to minimising the glide angle, 0, and
inspection of Eq. (13) shows that the L/D ratio is inversely related to 0. Given that
L~ mg = W is a constant, then the minimum glide angle 0,,,, corresponds to gliding
with the minimum possible total drag, D,,,. The expression (16) for U, thus also
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defines a best glide speed, U, . Rearranging Eq. (16) slightly,

W2 1 1/4
U, =um,,=(_) (-—) . (19)
9 pS ARC, en

Dpro
W has been substituted for L and U,, is expressed in terms of the wing area, S,
and the aspect ratio AR. The best glide speed increases with W, and decreases
with both § and AR. If the objective is to extract energy from the environment
and glide without loss of height, then it is useful to be capable of this for as low
a value of U as possible, and there are two possibilities for minimising U, ; have
wings with large area, S, or have long narrow wings and increase AR. These
contrasting strategies are illustrated in Fig. 9, from Pennycuick (1983), who
compared the gliding performance and wing planform of the frigatebird, pelican
and vulture, all of which were observed to make extensive use of thermal soaring.
The frigatebird has a very low wing loading (Q =37 Nm™2), as well as a higher
aspect ratio (4R = 13), compared with both the pelican and the vulture (Q = 58
and 55N m~2, AR = 10 and 6, respectively), and so manages to minimise both of
the terms in Eq. (19). It is distinguished by almost constant gliding and soaring
in trade wind thermals for days on end, rarely coming in to land. The shorter,
slotted wings of the pelican and vulture probably represent a balance between
adaptations for landing and take-off and induced drag reduction for wings with
limited span and low moment of inertia.

Air Time. The cross-country performance of a glider may alternatively be measured
by energy consumption per unit time. In steady flight, the kinetic energy of the
glider is constant, and so the rate of energy loss required to overcome drag (and
generate a wake) is balanced by a reduction in potential energy, occurring at a
rate mgU,, where U, is the vertical downward velocity, so

mgU,=DU. (20)

mg is a constant, and DU can only be minimised through U,. The total drag was
givenin Eq. (15), and substituting an approximate expression of the form of Eq. (18),

Fig. 9. Silhouettes of three gliding birds. From top:
Fregata magnificens, Pelecanus occidentalis, Coragyps
atratus. (Pennycuick 1983)
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assuming a turbulent boundary layer, for the skin friction and normal pressure
drag components of D, + D, U, may be written in the form

par®

U,=kopU3S?Re™ % + __2W .
pUSARen
The first term in Eq. (21), due to profile drag on the wings and body, increases as
52, while the second term from the lift-induced drag is proportional to S™', so U,
increases with S. The second term is inversely proportional to AR so a cross-country
glider should have as high an aspect ratio as is structurally possible, compatible
with the other flight requirements. Albatrosses have aspect ratios of around 15,
while modern composites and specialised function allow AR > 20 in almost all
man-made gliders. Equation (21) depends only on the wing geometry through S
and AR, for a glider of a given weight moving with a given airspeed, U. The graph
of U,(U) is called a glide polar (Fig. 10a). Because birds, and to a lesser extent
bats also, have the ability to modify b and S at different U, they will occupy an
envelope on this plot determined by the family of glide polars attainable from
varying the wing planform. Similarly, changes in profile camber, or the recruitment
of additional high lift devices, such as those discussed in Sect. 3.2, will extend
the domain of available U (U) ratios, as discussed by Tucker (1987).

2h

Turning Radius. Glider pilots and birds (cf. Cone 1962b; Pennycuick 1975), but
presumably not nocturnal bats, make extensive use of atmospheric thermals, which
are most often columns of circulating and rising air, but may also be buoyant,
rising vortex rings. Both are created by differential heating on the ground by solar
radiation, and both are limited in horizontal extent, supplying an incentive to be
able to maintain a small turning radius. In a steady, nonaccelerating turn, the
centrifugal force, mU?/r, is balanced by the component of the lift vector projected
onto r, so, if ® is the angle between the lift and the vertical,

U? )
g Lsin®. (22)
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Fig. 10. a Glide polars for the fruit bat (1), Rousettus aegyptiacus, the white-backed vulture (2),
Gyps africanus, and the ASK-14 motor glider (3). (Data from Pennycuick 1971a,b). b Family of
glide polars generated for Gyps africanus turning at different bank angles ®. (After Pennycuick
1975)
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r is constrained by possible values of ® and L. For convenience, one can set an
upper limit for sin® =1 (practically speaking, it will be much lower), and the
highest value of L is determined by C, ., and so the limit on r is,

P min = 2 * (23)
PSChpan

If C,,. is constant, r,,, depends only on m/S, equivalent to the wing loading (for
constant g). The component of lift opposing mg is now Lcos®, and U, in a turn
will be related to the straight-line U, by

U, = Uscos . (24)

A family of glide polars may therefore be constructed for a range of ® (Fig. 10b).
Pennycuick (1971b) examined the gliding performance of the white-backed vulture
by following individuals around in a small glider, noting that these thermal soarers
have comparatively low AR wings, but large wing areas. According to Eq. (23),
this would appear to make them ideally suited for small radius turns, and
comparisons with a hypothetical albatross-shaped vulture showed them better
able to remain inside small thermals than if they had the higher AR, but lower §
wing planform. However, this would be offset by the albatross-vulture’s improved
cross-country performance between thermals, and it seems that the difference
cannot be accounted for purely in terms of aerodynamic soaring performance.

Dynamic Soaring. Lighthill (1975) outlined a surprisingly simple analysis of dynamic
soaring, which we use here. Consider a body, B, in a fluid where there is a mean
shear of the u component in the vertical direction, z, such as at a wall boundary
layer, or over an air/sea interface. B might equally be a fluid element in a turbulent
shear flow, or an albatross in a wind gradient. B has velocity

u=a@z)+u,v,w, (25)

where the primed components are the fluctuating velocities in the turbulent flow,
or the components of velocity of the bird, in (x, y, z). Overbars are mean quantities,
and the mean shear ii(z) varies only with z. The kinetic energy of B relative to the

velocity gradient is
e =3m(u?,v? w?), (26)

and if B is a gliding bird, ¢’ must be maintained by performing work to overcome
aerodynamic drag forces, so as to avoid stalling. The rate of exchange of total
energy between B, moving at («',¢’,w'), and the mean velocity gradient is

P=—muw <. (27)
cz
The magnitude of P in*(27) is proportional to the magnitude of di/dz. The sign

of the product u’'w’ may be positive, implying a transfer of energy from the mean
flow to the fluctuating part (the bird). This will occur when " and w’ have opposite
signs; when flying into the shear, u’ is negative so w’' should be positive, and,
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conversely, when u’ is positive, w’ should be negative. The required behaviour of
flying upwards into wind shear, and downwards away from it has often been noted,
and has been subject to quite elaborate analyses (e.g. Cone 1964; Wood 1973), but

" more accurate measurements of albatrosses gliding in wind shear by Pennycuick

(1982) revealed that the magnitude of di7/dz would not be sufficient to maintain
the kinetic energy, except very close to the water surface. Instead, there must be
some conversion of kinetic into potential energy, so that the bird decelerates as
it gains height, deriving most energy from slope lift in waves at the surface, much
as proposed by Wilson (1975). Note that the mechanism of dynamic soaring
probably still pertains, and the flight path is chosen with the sign of Eq. (27) still
in mind, but that the mean shear cannot by itself supply sufficient energy. Also,
the variable wing geometry that allows birds to glide at low speeds and high lift
coeflicients also relaxes somewhat the condition (26), more readily allowing e’ to fall.

5 Forward Flapping Flight

5.1 The Principles of Lift
and Thrust Generation by a Beating Wing

In the absence of any energy input from the environment, the beating wings of
an animal in steady flight must provide both lift and thrust required to maintain
height and forward speed. We therefore begin by outlining the kinematic basis for
generating both force components from an oscillating wing section. As Lighthill
(1969) noted, in order to provide weight support, some asymmetry must be
introduced into the combined pitching and heaving motion of a lifting surface,

Wing-section path

-
Flight path

™m

F=Fq+F, =

Fig. 11. The production of lift and thrust with an asymmetric wingbeat
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and it is sufficient just to add a constant angle of attack to the otherwise symmetric
motion of a thrust-generating wing. The easiest way to imagine doing this for a
flying animal is to tilt the whole body, and/or the wings relative to the body, so
that they beat in a plane inclined at an angle, §, to the horizontal. The result is
analysed in Fig. 11. Owing to § #0, the wings sweep forward, with respect to the
wing root, on the downstroke, and backwards on the upstroke. Both the incident
velocity, u, and the geometric angle of attack, a, are larger on the downstroke than
on the upstroke, and so the magnitude of the resultant force, Fy, is greater than
that produced during the upstroke, F,. If the time spent on up- and downstrokes
is equal (the downstroke ratio,  =0.5), and the L/D ratio is constant, Fig. 11 is a
graphically accurate demonstration that the mean resultant force, F=F,+F,,
averaged over the wingbeat, can have positive components of lift and thrust.
Actually, this figure includes a second strategy for introducing the required
asymmetry, as « is even furtheér reduced during the upstroke, following a strong
pitch-up rotation (or supination) at the end of the previous half-stroke. This
contributes to the reduction in magnitude of F,. There is considerable scope for
exerting fine control over the magnitude and direction of F, via changes in « (it
may even be negative), aerofoil section camber, and 7. The proportional feathering
parameter, ©, (Lighthill 1969) was introduced in Chap. 2, and it controls the
local incidence angle compared to the local relative wind, effectively determining
the balance between thrust and efficiency. The complicated kinematics, together
with the highly variable wing geometries encountered in nature (recall Figs. 4 and 6),
conspire to defeat attempts to include all possible kinematic and geometric
parameters in a theoretical analysis, and the focus turns to formulating a simple
model problem which can be solved, but which still captures some of the essential
physics. Generally, one may proceed either by modelling the beating wing, or by
constructing a simple model of the wake (recall Fig. 1).

5.2 Blade Element Analysis

The classic reference for this approach is the work of Jensen and Weis-Fogh 1956;
Weis-Fogh and Jensen 1956; Weis-Fogh 1956; Jensen 1956) on the desert locust,
Schistocerca gregaria. One of the advantages of dealing with locust wings is that
their geometry and kinematics are comparatively simple, a prerequisite for this
type of analysis. Figure 12a introduces the coordinate system for describing the
flapping wing of an animal moving at forward speed U. The wings beat in a plane,
at an angle § to the horizontal, through a total angle ¢. The kinematic analysis starts
by examining the wing position as a function of time, y(t). Assuming the wingbeat
is sinusoidal, then

) =7+ 3¢sinwt, (28)

where w = 2nn is the radian frequency of the wingbeat. The angular velocity is

) w
wt) = 3 ¢ cos wt,
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Fig. 12a,b. Two alternative perpectives for the acrodynamic analysis. a The kinematics of a
flapping wing. b Wake momentum flux
so the velocity of the wing at a span section, r, and at time ¢ is
) w
u(r,t)=rit)=r 5 ¢ cos wt. (29)
The local incident velocity, u(r, 1), at a wing section will depend on the resultant,

u,(r,1), of u,(r,1), and U, the forward flight velocity, and also on w;(r,1), the
downwash velocity, which alters the local angle of attack (Sect. 3.2, Fig. 5),

Aepr = A — Ay (30)
where
- Wi(r9 t)
i tan ! e . l
* [..,,(r, :)] Gh

Some means of estimating w;(r,t) in (31) must be found. Commonly, it is assumed
to be uniform across the span, as in the elliptically-loaded lifting line (Sect. 4.3),
with a value estimated from actuator disc models (Sect. 5.3). Jensen and Weis-
Fogh actually did not do this. Instead, locust wings were placed in the wall
boundary layer of a wind tunnel, and the lift and drag on the entire wing in a
shear flow similar to that produced by flapping about the wing root were measured.
The drag thus included the induced drag, which did not have to be estimated
separately.

Now, given 2, provided that all 3-D effects can be ignored, and if stcady-state
aerofoil properties can be used, then ¢, may be estimated from empirical ¢,(«) data.
Given u and ¢,, the local section lift and drag forces are:

L(r,t)=LpuicS’ } (32)

D'(r,1) = $puic,S’

S’ is just the wing chord, c(r) at the span r, and the primes indicate that L' and
D' are the components of the aerodynamic force per unit length. The mean lift is
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the integral of the vertical components, L, and D/, of L' and D’ over R and T,
_ 1 T(R
L= ;I {I [L:.(r,t)+D;.(r.z)]dr}d:. (33)
olo

Based on the kinematic measurements from wind tunnel flights when the locusts
were measured to be supporting their weight, Jensen was then able to calculate
the total lift and drag from relationships such as (32), using only three weighted
averages along the wingspan. The mean lift and drag were found to agree with
the measured values to within 3% and 7% for the two flights considered. Since
the lift and drag coefficients had been determined in steady state wind-tunnel tests,
these results were construed as convincing evidence that the aerodynamics were
consistent with steady-state principles, contrary to many beliefs at the time. It was
further argued that this would be expected to be the case, given the wingbeat
kinematics and angles of attack measured during flight. The frequency parameters
k, Q and K may be calculated for a locust forewing with mean chord, ¢ = 0.93 cm,
semi-span, b = R = 5.21 cm, forward speed, U = 350cms ™!, stroke angle, ¢ = 83°
(1.45rad), and wingbeat frequency, n=17.5Hz (w=110rads™'):

k=2C_01s, 0="b_164 Kk=29"R_¢7ss.
2U U U

k and Q are not exceptionally small, and the advance ratio, J =K' =132 is
relatively large, but certainly not huge. Although the authors at the time had little
alternative but to proceed and use the aerodynamic forces calculated in this way
to estimate the power required of the flight muscles to generate the necessary
torques at the wing root, we shall later see that 3-D and unsteady corrections can
nevertheless be significant in this domain.

Further simplifications of Eq. (33) are possible. If the changes in local wing
twist, sectional geometry and chord length are such as to maintain a constant
value of ¢; and c, along the span, then the coefficients may simply be replaced
with mean values over the whole span and wingstroke. If a constant w; across the
span is also assumed, then the problem reduces simply to finding some manageable
formulation of the wingbeat kinematics and wing planform geometry. Examples
of this type of approach may be found in Norberg (1976a) for bats, Pennycuick
(1975) for birds, and Dudley and Ellington (1990a, b) for the bumblebee. In steady
horizontal flight, the vertical components of the integrated aerodynamic forces
during each wingbeat cycle must support the weight, and so one may write
equations of the form:

T T(R T(R
fwdt=pC, | {[ u?(r, t)S’(r) cos Wdr}dt +pCp| { [u?(r,0)S'(r)sin dzdr}dt,
0 olo olo

(34)

where the angle ¢ is a much simplified representation of the required projection
geometry calculations. Here it plays a role quite analogous to a projection onto
the horizontal plane of the vertical impulse of the wake. This analogy should
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become clearer in Sect. 5.4. A similar equation for the horizontal force projections
can be written, and if D,,, and D, , can be estimated, the system may be solved

par

for C, and Cp. The argument now shifts slightly; if reasonable values

of C, and C,, are computed, consistent with the known or likely performance of
the aerofoil wings, then the initial assumptions of steady-state performance are
supported. If not, some other mechanism must be significant, and unsteady effects
of various kinds may be proposed. Just by itself, this is a curiously circular sort
of argument, of little interest unless the numerical results are then used in
subsequent calculations. The controversy over this proof by contradiction,
summarised by Ellington (1984, 1,1V, V), seems endless, and we shall return to it
in the hovering flight discussion (Sect. 7.2). Note, however, that regardless of
whether 3-D and/or unsteady corrections are required for an accurate aerodynamic
analysis, their relative importance in the wing aerodynamics is a slightly different
issue than whether or not they need to be incorporated in a general flight model,
and it is easy to imagine a wing which accelerates and rotates at the extremes of
the wingbeat, being dominated by unsteady effects there, but overall having a
performance roughly equivalent to an unspectacular mean lift coefficient averaged
over the whole wingbeat. Indeed, direct measurements of the instantaneous lift
forces on the locust-in-a-wind-tunnel experiment by Cloupeau et al. (1979) showed
that the amplitudes of the fluctuations in aerodynamic lift were about two times
those calculated by Jensen, while the time-averaged values were approximately
the same, implying that unsteady effects are significant. Moreover, Dudley and
Ellington’s (1990b) wind tunnel experiments on the bumblebee (in free flight) for
U =0—4.5ms™ ! indicated that the minimum required C, values always exceeded
1, while the wind-tunnel tests showed the wings to be incapable of C;, > 0.8 in
steady flow. The same frequency parameters can be calculated as for the locust,
and at the top speed of 4.5ms ™! one finds:

k=040, Q=265 K=1.52

The reduced frequencies are substantially higher than for the locust, and it is no
longer true that k « 1. It will later be demonstrated (Sect. 5.5) that at these values
of k and Q, one expects unsteady corrections to be significant, and that the
conclusion of Dudley and Ellington, that at no flight speed can the aerodynamics
of the bumblebee be satisfactorily accounted for on steady-state principles, is as
predicted on theoretical grounds.

A detailed, steady, lifting surface analysis of the wing of a house sparrow in
mid-downstroke has been performed by Hummel and Mollenstadt (1977). Quite
modest values of C, = from 0.3-0.7 were reported, although the authors suggested
that values of 0.7 are close to the maximum for such a wing profile at Re, = 10*.
In general, blade element/quasi-steady lifting line methods will be valid for birds,
bats and insects in steady forward flapping flight at sufficiently low Q. The chief
disadvantage is the requirement of, at least, detailed kinematic and morphological
data, and preferably additional steady-state aerofoil measurements for a number
of wing section profiles. The analysis can become cumbersome and tedious, and
it may be difficult to generalise the results. Moreover, just what constitutes a small
enough Q remains unclear, as there are indications that Q= 2.0 is too high, even
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from a rough, practical viewpoint. With further increases in Q, the basic aero-
dynamic premises and assumptions are almost certainly invalid.

5.3 Momentum Jet

The momentum jet, or actuator disc model, is also a steady-state model, but it is
a dramatic simplification of the situation (Fig. 12b). Nothing remains of the original
animal apart from a circular disc, whose diameter is equal to the wingspan, 2b.
The disc applies a uniform downward acceleration to the fluid, which reaches a
final vertical velocity of 2w;. The mass flux through the disc is pUS,, and the rate
of generation of downward momentum is the product of the mass flux times the
velocity, 2w;, to which it is accelerated. In steady flight, this force balances the
weight:

w
2pUS,

The second expression gives a value for the induced velocity across the disc. It
may be used as a first estimate to correct for the induced downwash in the blade
element theory [Eq. (31)]. w; is constant and so the power required to generate
an upward force equal to the weight, W, is

wZ
2pUS e

e is the aerofoil efficiency introduced before, and it is used to account for the fact
that air is not accelerated uniformly and steadily across S,;. Equation (36) is exactly
equivalent to Eq. (11) derived from the lifting line equations, after substituting for
the drag and lift coefficients, and noting that S, = nb2. There are no parameters
which reflect the fact that the wings are actually beating, except indirectly via the
increased thrust required to achieve the airspeed U.

Note how the perspective has changed, from considering the kinematics of
the wingbeat and lifting properties of the aerofoil surfaces to calculating the
momentum flux in the wake model, albeit a highly simplified one. The principal
advantage of such a model is its simplicity and ease of manipulation. The power
requirement can be calculated given only the body mass and the wingspan, and
no other inputs are necessary. The disadvantage is that we may have thrown the
baby out with the bath water; the model cannot reflect any changes in wing
area, aspect ratio, wingbeat frequency, section geometry or kinematics, except by
ad hoc adjustments of the factor e. Furthermore the wake model is not realistic.

W= pUSd'ZW,‘, or, w; = (35)

P" = WW,— = (36)

5.4 Vortex Wake Models

Vortex Loops. In a sense, the momentum jet model is a vortex wake model; an
infinitely thin, cylindrical sheet of vorticity surrounds the uniform jet, separating
it from the outer undisturbed fluid. As w; is spanwise constant there is no vorticity
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(iii)

[y

(i) (iv)

=y

Fig. 13(i)-(iv). A conjectural mechanism for the origin of a closed vortex loop behind a flapping
wing pair. In each of the four timesteps, labelled frames (i) -(iv). the wing pair and wake are seen
in oblique view, moving into the page with velocity U. The stick-like body takes no part in the
aerodynamics. Vorticity shed during the downstroke is assumed to roll up immediately, and can
therefore be represented as a single, curved line-vortex. The true behaviour of such a convoluted
vortex is not known; here, local fluctuations in curvature decrease in magnitude with time. At
the end of the downstroke, the wings vanish, since they contribute no further to force generation

inside the cylinder, which contracts in diameter as w; increases. Figure 13 represents
an attempt to construct a more realistic wake model from first principles,
considering the motion of a rigid, beating wing pair on an infinitely thin body in
steady forward motion. In the first frame, the wings are just beginning to move
on the downstroke. According to the principles outlined in Sects. 3.1-3.2, the
circulation at each span location, r, depends on the local chord, c(r), and on the
relative velocity, u(r), which, ignoring wake induced velocities for the moment, is
the vector sum of the forward speed, U, and the local flapping velocity, u,, = 2¢nr.
The local circulation may therefore fall towards the wing root, as indicated by the
dotted lines in the wake, but if this 6T is assumed to be small, the starting vortex
shed at the wing trailing edge could have an initial configuration something like
frame (i). As the wings continue during the downstroke [frame (ii)], the tip vortices
link the bound vorticity on the wing with the convoluted starting vortex which
convects and deforms according to its own induced velocity field. At the end of
the downstroke, the circulation on the wings drops to zero and a stopping vortex
shed at the trailing edge completes a closed vortex loop which drifts away in the
wake. Now, suppose the upstroke does no aerodynamic work whatsoever (the
wings have disappeared in the last frame), and suppose that the loops of frame
(iv) may reasonably be approximated as elliptical, planar, small-cored vortex rings.
In this case, the wake is composed of a series of vortex loops, one created on every
downstroke. This is the basis of the flight model for forward flight introduced by
Rayner (1979a, b). The energy of each ring is determined by its size and circulation.
The streamwise and spanwise ring dimensions are determined by the wingbeat
kinematics and geometry, and by the form of I'(y) on the wings. The ring circulation
is computed by enforcing the force balance condition that the rate of generation
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of wake momentum must balance the vector sum of the weight and drags on the
body and wings. The induced power is then calculated from the mean rate of
increase of wake kinetic energy. The beauty of this calculation is that the details
of wing profile geometries, spanwise twist, unsteady lift generation and vortex
shedding in the wake are all unimportant - provided that the result is equivalent
to a vortex loop with the predicted size. The unsteady effects are taken into account
via the more realistic wake model, and the kinematic data requirements are not
overwhelming. Morcover, the effect of varying ¢ and downstroke ratio, z, could
be investigated and related to the selection of flight style. It was found that
variations in these parameters permitted access to a family of P(U) curves, passing
from small ¢ in fast flight, to large ¢ in the short, slow [lights typical of small
passerines, for example.

Independent confirmation that the wake can take the form of a series of closed
vortex loops was pro- ded by Kokshaysky (1979), from wake visualisation experi-
ments on small passcrines in a flight cage. Further quantitative work, using
multiple-flash stereo photogrammetry and 3-D wake reconstruction techniques
(Spedding et al. 1984; Spedding 1986) showed that the only detectable concen-
trations of wake vorticity left in the wakes of the pigeon and jackdaw in slow
flight were indeed almost-circular vortex rings (Fig. 14), but direct measurements
of the wake momentum found only approximately half of that required for weight
support. It was also demonstrated (Spedding 1986) that the wake circulation
measurements were not internally self-consistent, implying that its structure, or
time history, might be more complicated than suspected. This complexity is
particularly evident in the initial and final roll-up of the convoluted vortex sheet
[frames (i) & (iii)]. Mutual annihilation of viscous, finite-core vortices of opposite
sign, followed by vortex reconnection, has been documented in interacting vortex
rings, and it is reasonable to enquire whether it could occur so as to reduce the
size and/or strength of the final, measured ring structure here. Saffman (1990) has

Fig. 14, Vortex ring in the wake of a slow flying pigeon. The flow is traced by multiflash images
of neutrally buoyant, helium-filled soap bubbles



e el — e e — -

e — e - oy - e e =

The Aerodynamics of Flight 81

proposed a model which allows the time scales of these events to be estimated,
governed by two parameters, ¢ and u:

?

a nv
—, p = |/2 .

R o€

¢ is the ratio of core radius, a, to ring radius, R, and u is like an inverse Reynolds
number, where v' =2nv, and I, is the circulation. The characteristic times in
seconds for cancellation and reconnection are T* and T}, respectively, estimated as:

T* = SnR? 55"‘(In 1)1/2
‘ Iy u

E=

Substituting the appropriate values for the pigeon wake, one arrives at time scales,
T* ~04s, and T* =0.2s, with the same order of magnitude as the stroke period
(T = 0.15s). Initially, local regions of opposing, deformed loops will have smaller
values of R, and consequently, shorter local time scales, T* and T}. The analysis
is limited to cases where the separation distance, z « R. Firm conclusions cannot
be drawn from this approximate analysis, but it does suggest that such viscous
physical processes could significantly affect the dynamics.

A qualitatively similar wake structure has been reported in noctule and long-
eared bats (Rayner et al. 1986), and together with Kokshaysky’s result, it appears
that this type of wake is characteristic of slow flight at high Q (Q=5.8 and 4.1
for the pigeon and jackdaw respectively) in birds and bats. Such a model predicts
that less energy will be consumed by increasing the amplitude of the wingbeat,
rather than the frequency, as U decreases, and this seems to be the strategy adopted
in nature.

The closed-loop wake can only occur if the upstroke performs no aerodynamic
work, and consequently leaves no trailing vortices. This is most simple to envisage
in the slow flight of birds and bats when the wings are folded close to the body
on the upstroke, whose function may be interpreted either as doing as little as
possible (including minimising inertial and profile power requirements) for as short
a time as possible, or as a means for effectively removing the bound vorticity built
up on the wing during the downstroke. The upstroke often consumes a substantial
fraction of the wingbeat period, and the latter interpretation may shed some light
on the complex twisting and rotational motions. Insect wings cannot fold to the
same extent during flight, and it is well established that they operate over both
downstroke and upstroke (e.g. Jensen 1956; Vogel 1967, Nachtigall 1974),
generating useful forces (with lift and/or thrust components) at either positive or
negative angles of attack. The wake structure in this event will be different, the
exact form depending on whether the starting and stopping vortices of successive
wing strokes are merged or not (e.g. Brodskii and Ivanov 1984). Wake photographs
behind a dragonfly in a wind tunnel (Azuma and Watanabe 1988) clearly show
continuous tip vortices, but the cross-stream elements are hard to identify. Experi-
ments by Luttges and co-workers (summarised in Luttges 1989) have demonstrated
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complicated vortex wakes composed of a number of discrete coherent vortex
structures behind tethered dragonflies and model wings in a wind-tunnel for values
of Q around 0.9-2.7, but one would be hard-pressed to formulate a general model
based on such intricate smoke trail patterns. Presently, a vortex theory based on
a simple wake model for forward flight in insects is lacking, although the LCM
model, considered later, does incorporate a simple, fixed wake model into a blade
element type of calculation.

There is no shortage of evidence from the wingbeat kinematics of both birds
(e.g. Brown 1963) and bats (e.g. Norberg 1976a) in medium-speed flight, that at
least part of the wing is aerodynamically active on the upstroke, and a conceptual
model different from Fig. 13 is required.

The Roller-Coaster. As we have already remarked, the crucial requirement, in
order to support the weight and provide thrust for steady forward flight, is that
the wingstroke be, in some sense, asymmetric. The resultant aerodynamic force,

Fig. 15. a The wake of a kestrel in cruising flight. The flight was from right to left. The trailing
vortex behind the starboard wing is marked by bubbles trapped inside the core. In the section
created during mid-downstroke, the scarcity of bubbles has created a cutout, where the axial
core flow, and behind this, the outer, induced, recirculating flow can be clearly seen. b Wake
model based on a. Two line-vortices with constant circulation enclose planar areas 4; and A,
traced out by the extended wingtips, and folded primaries during the downstroke and upstroke,
respectively
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F, on a single beating wing with circulation distribution I'(y) over the semi-span,
b, can be expressed as

b
F= pug C(y)dy, (37)

and the orientation of F may be altered by changes in the wing stroke geometry,
effectively changing the direction of u, while its magnitude may be modified via
changes in I'(y), or in the semi-span, b. For any oI" on the wings, there must be
an increment of — I, in the wake, corresponding to the shedding of vorticity.
If, on the other hand, b is gradually reduced, to b', say, while maintaining the same
I,, vortex shedding will be confined mostly to regions near the wingtips, where
the largest adjustments in I'(y) occur, and the generation of concentrated spanwise
vortices can be avoided. A nonzero net force may be generated according to the
difference in impulse of the two segments of the wake. The wake of a kestrel in
cruising flight has been shown (Spedding 1987b) to consist of two continuous
undulating vortices, without detectable cross-connections between them, as con-
firmed by measurements of invariant circulation along the wake vortices. At the
beginning and end of the flight, transverse starting and stopping vortices will be
generated, thus completing the roller-coaster track. In cruising flight, the kestrel
flexes the primary feathers on the upstroke, while the secondary feathers remain
loaded, and the tip vortices appear to be shed at the corner between the two.
Figure 15a shows an example wake photograph. Because the wake circulation,
I, =T, is constant, a very simple vortex wake model may be constructed, as in
Fig. 15b, and the induced power requirement may be calculated from it. The
impulses, I, and I,, of the wake segments with areas A4, and A,, created during
the downstroke and upstroke respectively are,

ll =proAl and lz = proAz. (38)

The reaction force is equal to the time rate of generation of the wake impulse,
F = dI/dt, and so, if the planar wake segments make positive angles y, and ¥,
with the horizontal, the average lift and thrust (= D in steady, equilibrium flight)
forces, integrated over one wingbeat period, T, are:

1

L= }pro(/ﬂl cosy, + A,cosy,)

— 1 ; : il
D= .’i_pl'o(Al siny, — A,siny,)

The power requirement may be calculated by writing out the usual relationships
for the force balance, when L must balance the weight minus any vertical
components of the extra-lift drags, and D balances the remaining D, and D,
on the body and wings. If D,,, and D,,, can be estimated, Eq. (39) can be solved
for I', and one more unknown, which may be ¢, determined by the wingbeat
kinematics, or A, ,, determined also by the wing shape. The ratio of A,:A4, in
Fig. 15 depends on the ratio of the flexed wingspan to the outstretched wing span,
and since the span is reduced mostly by flexion of the primary feathers, simple
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estimates of the flight performance can be calculated in terms of this ratio of wing
planforms. For example, if , =y, and the ratio of the upstroke to downstroke
wake areas, A,/A4, =(, ({ £ 1), then the lift: drag ratio may be expressed as

L_(1+¢
B—<l _C)COtI/I. (40)

L/D depends only on { and y, and it will increase with increasing ¢, and with
decreasing . When the L/D ratio is of concern, such as in long distance migration,
the relationship above would predict that a sensible strategy would be to reduce
the wing beat amplitude and flexion of the wing as far as is possible while still
generating the required thrust. Alternatively, if { and ¥ can be measured, then the
values of L/D, or of D, and D,, implied or assumed in a flight model may be
checked. Pennycuick (1989b) has done this to find significantly higher L/D ratios
than predicted by simple actuator disc theory in the foraging flight of cormorants.

The roller-coaster model has a convenient balance between complexity and
realism on the one hand, and simplicity and tractability on the other. The wingbeat
amplitude and frequency and wing shape are representcd as parameters affecting
the wake shape, but since the circulation of the wake vortices is constant, the
calculations are simple to perform. A comparable wake has been reported in the
medium speed flight of bats (Rayner et al. 1986), and together with the observation
that the cruising flight of a kestrel seems unremarkable and similar to that of many
other birds in medium speed flight, it is likely that this wake structure (and hence
valid application of the roller-coaster model) may be quite widespread. If the
kinetic energy of the vortex wake essentially represents lost energy, then the roller-
coaster wake without transverse vortex elements reflects a more efficient transport
of material per unit distance than if the cross-stream elements were present. On
these grounds, one might expect this wake to be present in most instances of long
distance commuting or migrating flight.

Insect wings cannot flex in this fashion to reduce the wingspan, and so the
required asymmetry must be achieved either from variations in the effective angle
of attack, or the relative time of the down- and upstrokes. In either case, cross-
stream vortices will be shed, and an accurate model should reflect this.

Swifts have curved, high aspect ratio, relatively rigid wings and may be unable
to generate a roller-coaster wake. If so, their wings should be interpreted as extreme
specialisations for soaring and high manoeuvrability, but perhaps accompanied
by a different strategy for reduction of wake energy losses, via the parabolic lunate
plunform, which we shall discuss later. Hummingbirds have developed rigid wings
with a low moment of inertia and extreme mobility of the shoulder joint, and their
hovering flight resembles more that of insects than other birds. This specialisation
for hovering apparently excludes them from the roller-coaster wake mode of flight,
and is correlated with a rather limited record of nonstop migration. Altough the
noctule of Rayner et al. (1986) was reported to be generating this wake, the limited
ability of bats to reduce the wingspan beyond a minimum required for maintaining
tension in the wing membrane, may also be predicted to limit their use of this
mode flight, and correlates with a similar lack of notable migratory performance.
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These issues have been discussed by Pennycuick (1988), who also speculates as to
the possible wake patterns in extinct flying animals.

Rayner (1986) has incorporated this model wake structure into a quasi-steady
lifting line analysis, where the form of I'(y) was taken to be that described by Jones
(1980), and T, and ¢ were solved for a given frequency, n. P(U) curves could be
constructed from those combinations of n and ¢ that minimised the mechanical
power requirement at each U. The inertial forces and wing root bending moments
were also computed, and inertial components were found to be large, comparable
to the aerodynamic forces in magnitude, as reported also by Bilo et al. (1984).
Inertial power requirements have customarily been assumed to be negligible in
forward flapping flight, but in the light of these results, this might not be correct
for birds and bats executing large amplitude wing motions at low flight speeds.

5.5 Unsteady Lifting Line and Relatives

LCM. The Local Circulation Method has been developed and applied to the
forward flight of dragonflies by Azuma et al. (1985) (LCM I), and refined by Azuma
and Watanabe (1988) (LCM II). It combines the approach of the blade element
analysis of wing sections with a more realistic and complete analysis of the
modifying effects of the unsteady (time-varying) wake. The wing planform and
initial circulation distribution is approximated by the superposition of a series of
elliptical load distributions of diminishing size, each operating in the appropriate
local shear flow. The wake model consists of the trailing and transverse (LCM I)
vortices fixed by the path of the wing tip and trailing edge (Fig. 16a), and an
iterative procedure is applied for the wake corrections to the circulation distri-
bution, along the lines of Sect. 3.2. Nonlinear, empirical ¢,(a) curves were used
to compute the forces and moments on the wings at each blade element. Since
the computations are quite lengthy, the wake attenuation coeflicients were actually
calculated only at 0.75R.

The LCM I method was applied to the slow climbing flight of a dragonfly,
for which k and Q, as defined here, were approximately 1.6 and 16. Both wings
operated well away from the linear ¢ () range for a substantial portion of the
wingstroke. The peak interference of the forewing wake on the hindwing was in
mid-upstroke of the hindwing, and the wings operated with a phase difference so
that the pitching moment was close to zero and a small net horizontal force was
generated. First-order unsteady effects were accounted for and shown to be
significant improvements over actuator disc-based estimates of constant downwash
over the span, but no other special high-lift mechanisms requiring large scale
separated flows were required to balance the forces in the analysis. The conclusions
were similar for the LCM 11 study of the free flight of a dragonfly in a wind tunnel
(02<k<1.2,322Q<12). It is hard to gauge the significance of the additional
corrections in LCM 11 since the two flight behaviours, and the reported curves of
the total aerodynamic and inertial torques are quite different. The comparison of
LCM II with a standard blade element calculation (constant w;) at the highest
flight speed, U =3.2ms"™", and consequently lowest k and Q (=0.2 and 3.2)
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Fig. 16a,b. Vortex wake models for forward flapping flight. a Trailing and transverse vortices
left in the path traced by the fore- and hindwings of the dragonfly. (Azuma and Watanabe 1988).
b The near and far wake model. (Phlips et al. 1981)

revealed much smaller (around 20%) differences in the vertical forces than in the
thrust (factors of 2-3), both for the instantaneous, and time-averaged values. Note
that neither correction can be considered negligible. The estimated power require-
ments were well within the range for insect flight muscle.

Vortex Lattice and Lifting Line Methods. This group of techniques attempts to
extend the standard lifting line of Sect. 3.3 to oscillating or flapping wings with
geometry and kinematics closer to that found in nature. In contrast to the modified
blade element approach, detailed kinematic data are not taken from experiment,
but analytical forms of the planform geometry and wing motion are prescribed.
Usually these take the form of linearised, small departures from the straight-edged,
planar wing in steady motion, but the capacity to account for larger and more
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realistic perturbations is growing with increasing sophistication of the analysis.
The considerable advantage is that detailed parametric studies may be made of

. the effect of changing lifting surface geometries and kinematics. Also, the magnitude

of the unsteady and 3-D corrections to the quasi-steady analysis can be explicitly
calculated, lending a more solid basis for the sometimes rather speculative
discussions of the likely contributions of unsteady effects. Even when the strong
nonlinearities of the true complex geometry and kinematics of natural flight exceed
the domain of the model calculations, they can still provide a baseline estimate of
the lower order effects, upon which further corrections can be superimposed. It is
common to express the results in terms of the propulsive efficiency,
n=U{(T)/{P), where { T) and { P) are the time-averaged thrust, and the power
required, respectively.

1. Quasi-vortex lattice. Lan (1979) formulated a version of a doublet lattice method
for an oscillating flat plate wing, where, instead of representing a wing in steady
uniform flow by a continuously-loaded lattice (Sect. 3.2), the oscillating surface
was covered by a time-varying doublet lattice, and the system was solved for
zero normal velocity at the lifting surface, as usual. When the pitch axis was
fixed at the trailing edge, the sensitivity of a swept wing to phase differences in
pitch and thrust was much reduced compared to an unswept rectangular wing.
The swept wing always produced positive thrust while the rectangular wing
occasionally produced a negative thrust i.e. a drag. This effect was more pro-
nounced as k increased from 0.15 to 0.75. The interaction of pairs of rectangular
wings oscillating in tandem was investigated, and the efficiency, 7, and thrust
coefficient, C, were plotted as a function of phase difference, ¢,,, between the
fore and hind wings, for different reduced frequencies and different gaps between
the wing chords. ¢, for optimum n and C; decreased, both as k increased and
as the separation distance decreased. On average, the predicted optimum ¢,
for energy extraction by the hindwings from the wake of the forewings was 45°
and 90° for maximum C; and n respectively. Azuma and Watanabe (1988)
reported values of @, between 51° and 93° for their dragonfly in free flight for
U=0.7ms""'and 32ms" " respectively. The smaller ¢, to maximise Cy rather
than n is consistent with the changes in ¢, of dragonflies in various flight
maneouvres noted by Alexander (1984), and also with the qualitative trends
reported by Ruppell (1989).

2. 2-D unsteady motion. The basic principles of a high AR wing should be

accessible to a 2-D analysis, and detailed performance analysis and comparisons
of 2-D rigid and flexible aerofoils in unsteady motion have been made, following
the lead of Lighthill (1970). These have been applied to problems of aero- and
hydrodynamics, and the previous chapter may be consulted for further details.
The more simple analysis allows a quite rigorous and thorough approach
towards optimising the kinematics of the motion. Yates (1986) has considered
in detail the optimum location for the pitch axis in a 2-D analysis of a heaving
and pitching fin or wing. The analysis included the physiologically inspired
quantities of mean square pitching moment and mean square power requirement
for maintenance of lift, which are of obvious relevance to animal flight. When
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a mean lift force requirement was considered, the optimum pitch axis location
always moved towards the quarter chord location. This corresponded closely

. to the presumed torsion axis at the location of the larger bones in vertebrate
wings. Detailed static tests of torsional rigidity (Ennos 1988a, b) and estimation
of the forces acting in Dipteran flight (Ennos 1989) indicate that the torsion
axis typically lies at 0.15¢, while the centre of mass is located at about 0.3c. It
was noted that if the aerodynamic centre of presure is at 0.25c¢, then local torques
about the torsion axis will be created by both aerodynamic and inertial forces
set up along the span during the wingbeat. The changes in local pitch could
also explain the tip to base torsion waves observed in insect wings.

3. Quasi-steady lifting line (k « 1). Betteridge and Archer (1974) and Archer et al.
(1979) applied the classical lifting line analysis to rigid and flexible wings in
small amplitude flapping flight, and showed increased n with increasing k, and
predicted high values of local wing twist, to maintain an elliptic loading profile.
Based on similar model assumptions, Jones (1980) re-examined the optimum
load distribution required to minimise the induced drag for a given wing root
bending moment, and found that a 10% increase in thrust could be obtained,
for the same 5, for a I'(y) slightly reduced close to the base, and increased at
the tip, compared to the elliptic distribution. Recall from Sect. 3.2 the preferred
reduced tip loading for induced drag reduction in the steady lifting case. On
these grounds, one would predict that specialised steady gliders/soarers will
have more pointed wingtips than those that resort to flapping flight more often.
This would appear to be the case, as we shall see in Fig. 18.

4. 3-D unsteady lifting line. For the cases of most relevance to natural flight, a
subset of three of the domains identified by Cheng (1976) in the asymptotic
analysis can be identified for similar wings of high AR, characterised by the
relative magnitudes of the chord length, ¢, the semi-span, b, and a wavelength
in the wake, 2 =2nU/w = nc/k:

| ckb«i Q«l1
II c«b=0(1) Q=0(1), k«l
I ¢c=0(A)«b k=0(1).

Domain I includes the limit as Q — 0, and the flapping frequencies may be regarded
as sufficiently small for the 3-D problem to be treated as quasi-steady. In domain
I1, the flow next to the wing is nearly quasi-steady, while the velocity induced by
the unsteady wake vorticity is as large as that induced by the trailing vortices.
The roller-coaster kestrel wake was observed for k = 0.26, Q = 2.32, and we have
already argued that this constitutes a range of some importance. Cheng and Murillo
(1984) and Karpouzian et al. (1990) developed and examined the performance of
an unsteady lifting line with centreline curvature for Q = O(1), showing that the
balance of 3-D corrections with the leading order thrust terms was responsible
for an optimum degree of sweep (K,,,) for maximum #, when a reasonable, nonzero
mean thrust was required. The difference in n between the 2-D quasi-steady calcula-
tions, and those with 3-D and unsteady corrections amounted to about 109, at
K,pn for Q= 1.5. Around these values of K, the parabolic lunate planform was
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superior to a V-shape when no motion was allowed at the root. The identified
optimum K would appear to be similar to the planforms of the swift and swallow
families [Fig. 6(ii) ], but this has not been rigorously checked. In domain II1, Cheng
(1976) showed that the global effects of the unsteady far wake were self-averaging,
and that a 2-D analysis is therefore superior for a straight wing (adding justification
to the 2-D investigations outlined above), but that local 3-D corrections remained
important for swept wings, as is true also of the quasi-steady domain 1.

A 3-D unsteady lifting line theory for planar, rigid, unswept wings of high AR
has been developed by Phlips et al. (1981). It is based on a simplified model of
the vortex wake, which is divided into near and far wake regions (Fig. 16b).
Transverse vortices are shed at the extremes of the wingstroke, where they roll
up, and are represented by a single line-vortex. Streamwise vortices are shed at the
trailing edge and are assumed to remain in the path traced by the wings. In the
far wake, they collect into trailing vortex lines. This model simplifies the calculation
of wake induced velocities on the flapping wing, and the normal force on the wing
can be calculated assuming the standard linear c¢(«) relation (Sect. 3.1). These
assumptions effectively restrict the analysis to moderate values of k. When the
wingbeat amplitude, ¢, exceeded approximately 60°, significant departures from
the steady state calculations were reported, particularly for k > 1. The effect of the
induced velocity field in the unsteady calculation was to increase the value of the
mean lift coefficient (2209 for ¢ = n/2, k = 2), but the mean thrust coeflicients
were reduced slightly, so that the efficiency, 5 fell with increasing k. This is a first
order unsteady theory only, as spanwise flow along the wing and flow separation
are ignored, but the clear implication is that unsteady terms cannot be neglected
for k= 1.

5.6 Unsteady Effects in Forward Flapping Flight

Some interim conclusions, summarising and generalising the results of the experi-
mental and theoretical work above, can be stated. Note first that there are two
contributors to unsteadiness in the aerodynamics. The first is that due to the kine-
matics of the lifting surfaces, and is measured by the frequency parameters k,Q
and K. The mean errors in time-averaged lift force, pitching moment, and aero-
dynamic torque calculations from quasi-steady analysis might be expected to be
below 10% for K £0.75 (J = 1.5), but detailed analysis and understanding of the
effects of the wing kinematics and geometry require unsteady and 3-D corrections
in this domain, corresponding approximately to domain II above, where k « I,
Q= O(1). In the cases of insect flight, ¢ varies little, and while the time-averaged
corrections for k ~0.1,Q =~ 1 might be small, instantaneous forces and moments
are unlikely to be correctly represented in the quasi-steady, 2-D analysis. This
covers most of the range of insect forward flight.

The second contributor to unsteadiness on the aerofoil comes from time
varying shedding of vorticity at separation points on the lifting surface other than
the trailing edge, about which the lifting-line models and current generation of
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experimental techniques can say very little. Various high-lift mechanisms may be
postulated, as in the hovering flight section, Sect. 6.4. Strongly separated flows
could greatly affect the time-varying forces and moments on the wing. However,
for the moment, the first order corrections due to the vortex wake can be used as
lower bounds estimates for the unsteady effects. Azuma et al. (1985), using familiar
logic, have argued that strongly separated flows need not be postulated for the
dragonfly, as the forces balance correctly with only wake vortex corrections. Be
that as it may, the actual details of the flow and the effects of unsteady separation
on the instantaneous forces on a flapping animal wing for k = 0.1 are not currently
known with any great precision or certainty.

5.7 Flapping Flight Performance

The Aerodynamic Power Requirement. Just about any flight model generates a
characteristic U-shaped curve of the total aerodynamic power requirement, P, with
flight speed, U. The reasons for this may be found in Eq. (15), which in turn is
based on the fundamental lifting-line analysis of Sect. 3.2. The combined profile
. drags on the wings and body increase by some constant times U? and so the
power required, P = DU, rises with the third power of the velocity. By contrast,
the induced drag is proportional to 1/U%. Any model - blade element, momentum
jet, vortex ring, roller-coaster, LCM, unsteady lifting line — will consequently
generate a generic, U-shaped power curve similar to Fig. 17, given some reasonable
set of data, and the cost of transport, C = P(mg-U), will usually also possess a
well-defined minimum. The references for each flight model may be consulted for
detailed comparisons. Two general points may be made.

P(U) clu)
A
C
Cmin
O Une U(m.s)
b

Fig. 17. a A generic power curve (this one was generated by the roller-coaster model for cruising
kestrel flight). The total aerodynamic power, P, is the sum of the induced power, P;, the profile
power, P, . and the parasite power P,,,. Variations in P; between diflerent models are usually
small compared to differences in the calculation of P, and P,,. b The dimensionless cost of
transport, C, has a well-defined minimum at U,,,
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1. Scale effects. Equation (17) in Sect. 4.1 may be rearranged to show that a
characteristic flight speed, such as that which maximises C,, for example, is
related to the square root of the wing loading, i.e.

mg 1/2
Ucl_.max m (?)

In geometrically similar animals, sincem ~ I* and S ~ 12, then U, ..~ {'/*. The
dimensional power is F.U and as F ~ m, then the mass-spec:ﬁc power require-
ment is also proportional to /2. The maximum mass-specific power output
of vertebrate and insect muscle actually decreases somewhat at contraction
frequencies, n < 10 Hz (Weis-Fogh and Alexander 1977), and thus will decrease
slightly with m, so at some size, the power required must exceed the power
available from the flight muscles. The implications of these types of scaling
relations have been explained by Penycuick (1975), who derived them from his
momentum jet model. The power available, relative to any characteristic power
requirement, is larger for small flying animals than larger ones. Small birds
can hover or fly very slowly for small periods, while larger ones cannot. The
larger birds have a very limited range of flight speeds available to them for
continuous flapping flight, and show extreme specialisations for taking maximum
advantage of gliding and soaring techniques. Deviation from geometric scaling,
as larger gliding birds have higher aspect ratio wings, is clear in Fig. 18.
Moreover, all the larger species in the left column of Fig. 18, albatrosses and
the giant petrel, were found to possess a mechanical lock capable of resisting
wing elevation above the horizontal. On the other end of the scale, a humming-
bird with m= 5g is capable of continuous aerobic hovering flight, although
the largest of these, Patagona gigas (m = 20 g), appears barely capable of this.
One should be wary of generalising across phyla, but these simple scaling
laws are sufficient to account for the fact that almost all insects can hover
continuously.

t

» Q= 140

04
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Fig. 18. Allometry in the
wings of Procellariiformes. 06
The outlines are rescaled by 35.8
wingspan, 2b. AR and 2b vary

1

from 15 and 3m in the
wandering albatross at top left,
to 8.04 and 0.39 m in Wilson's
petrel. bottom right. The wing
loading, Q, is shown for each
species. (After Pennycuick 1982)
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2. The shape of the power curve. The second point concerns the agreement between
aerodynamic power requirements and metabolic measurements. In general,
metabolic measurements result in U-shaped power curves (consult Norberg
(1990) for a sample), but the shapes are often flatter than predicted. From the
aerodynamics point of view, two potential contributors to such a trend might be
noted: (1) Re-associated changes in the flow over the wings and/or body cause
Cppro» Cppar to decrease significantly with U. (2) The flight style changes with U.
(1) has been discussed in Sect. 3.1. Transition to turbulence around Re_, can
result in a strong inverse dependence of Cj,, on U, and soaring birds appear to
operate very close to that value. The most detailed measurements to date also
indicate that, at high Re, C,,, is almost constant with increasing U, or falls
slightly with Re. Even at the lower Re of insect flight, Dudley and Ellington
(1990b) measured reductions in C,,, of approximately 40 and 257 as Re
increased from 1 x 10° to 1 x 10%, for body inclination angles («,) of 60° and
0° respectively, in their bumblebce experiment. The magnitude of the reduction
and its dependence on «, is reasonably consistent with the expected behaviour
of separated flows over blufl bodies at this Re. The result also suggests that
changes in a, with U should be properly accounted for. (2) remains a possibility.
D,,, on the wings could fall with increasing U if the wing span, 2b, and so the
wetted surface area, S,,, are reduced by the live animal, although the concomitant
increase in D;, together with associated changes in wing twist and local angle
of attack, complicate the picture. While certain wingbeat parameters, such as
the stroke amplitude ¢, and the downstroke ratio, 7, are allowed, if not required,
to vary with U in various flapping flight models (Rayner 1979b), others, such
as the wingspan, b, are typically held fixed. The availability of families of glide
polars with variable geometry wings is well established (Tucker 1987), but similar
effects of systematic variations in wing planform geometry in flapping flight at
different speeds have yet to be investigated. This could reduce the penalty for
flight away from U,, and would also contribute to scatter in the metabolic
measurements. Both postulated mechanisms in (1) and (2) could flatten out the
P(U) curves, but the arguments remain essentially extrapolations from steady
gliding to flapping flight, and so must be considered somewhat speculative. The
remainder of the discussion is left to Chap. 8.

Kinematic and Behavioural Adaptations for Reducing Energy Consumption. Both
the profile and parasite drags, together with the lift-induced drag, generate wake
kinetic energy, and techniques to reduce the aerodynamic energy expenditure may
be regarded as attempts to minimise this wake energy loss.

There are two simple active techniques (to be contrasted with passive measures
such as improving streamlining) for reducing the total amount of energy deposited
in the wake in the first place. They are undulating and bounding flight, both forms
of intermittent flapping flight; in the former the wings are extended into the flow
during the non-flapping stage and the animal glides, while in the latter they are
folded tightly against the body. Both cases have been considered by Rayner (1985b).
Bounding flight is quite simple to understand in principle. For small birds,
especially those with large area, low aspect ratio wings, the wing profile drag
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comprises a large fraction of the total aerodynamic drag, and at high flight speeds
the increase in induced drag required to generate sufficient force for steady flight

. in only a portion of the wingbeat is more than offset by the significant reduction

in wing drag during that time. For this to be a viable option, the flight speed must
be high so the relative cost of induced drag is low. Careful considerations reveal
several subtleties in the cost-benefit analysis, however, including the idea that
muscle efficiency might be optimised at a fixed flapping frequency. Rayner’s paper
should be consulted for details. Bounding flight is common in passerines and
also in hummingbirds, among others, but has not been recorded in bats. An
intriguing variation on this theme has been reported by Betts and Wootton (1988)
where the fast flying, low aspect ratio skipper butterfly (Idmon sp.) was reported
to have its wings closed above the abdomen for 2T in intermittent flight.

A realistic analysis of undulating flight is quite complicated. It appears that
when the wing loading is low and/or aspect ratio is high, it is more economical
to alternate powered climbs, and gains in potential energy, with slower glides close
to the minimum drag speed, than to fly at a constant flapping rate. This can be
true when the maximum range speeds for flapping and gliding are different, and
switching between the two is accompanied by potential and kinetic energy
exchange. The allometric relationships manifest in Fig. 18 result in undulating
flight being commonly observed in the larger seabirds, and it ought to be noted that
this type of behaviour pattern also allows for the potential exploitation of updrafts,
either in a systematic fashion such as when pelicans flap in the intervals between
wave soaring, or on a more opportunistic basis. Undulating flight has been observed
in bats (Thomas et al. 1990) and in butterflies (Betts and Wootton 1988), both of
which have quite low wing loading.

There are further possibilities for energy extraction from the wakes of other
flying colleagues by selecting a position such that the wing experiences the updraft
created in their wakes, but not the downdraft (Lissaman and Schollenberger 1970;
Hingdon and Corrsin 1978). Formation flight in birds has often been interpreted
in this way, but the positioning accuracy required is quite considerable, and the
likely benefits of attempting to track a complex undulating wake profile in flapping
flight are not immediately obvious. One could perhaps consider the incentives to
remain away from downdrafts, commensurate with the behavioural advantages of
remaining in a flock, as restricting the domain of sensible locations. Formation
flight has not been reported for insects.

Finally, the interaction of a trailing vortex pair with a wall boundary, such
as the ground or sea surface, causes a reduction in the induced downwash on the
wings, and consequently reduces the drag. The cancellation of normal velocities
at the impermeable surface can be modelled by the addition of an imaginary mirror
image vortex system an equal distance beneath the surface, where the induced
velocities will therefore be exactly zero. For a simple horseshoe vortex, the ratio,
R, of induced drag in ground effect to induced drag out of ground effect may be
estimated by

_Co,__(16H)

R A 41
Cp, (1+16H)? @
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where H = h/2b is the ratio of the flying height to wingspan. For entirely plausible
values of H of around 0.2 (if AR =~ 10, this is 2 mean chord widths), R = 0.6, a
substantial reduction. Aircraft must routinely take this into account on take-off
and landing, and various sea birds, such as brown pelicans, clearly profit by flying
at or below these values of H. Hainsworth (1988) has measured typical gliding
heights of pelicans in ground effect, and Blake (1983) has discussed the topic with
reference to bird flight in some detail.

6 Hovering

6.1 The Flow Regime

Hovering flight can be defined as the ability to remain airborne ir a fluid with
zero or negligible mean relative velocity between the body and the fluid. Since the
forward speed of the body contributes nothing to the flow over the wings, hovering
is the most energetically demanding of flight styles. From the scaling arguments
presented in the forward flight analysis, this mode of flight will clearly be restricted
to smaller flying animals, mostly insects and hummingbirds, and the latter may
be considered as honorary insects for our purposes. Momentary hovering is
typically unavoidable in landing and take-off and must be accomplished by most
flying animals that cannot rely on special mechanisms involving either the storage
of potential energy (dropping from a height) or the extraction of reliable sources
of kinetic energy in the environment (soaring). Hovering and slow forward flight
have been instrumental in enabling insects to occupy microniches not available
to larger flying animals. From an analytical perspective, some simplifications arise
since the form drag on the body may be neglected, but the importance of accurate
estimates of the lift-induced power, and by implication, realistic models of the
wake vorticity distribution, is greatly increased.

Hovering flight may be defined as all cases where Q2= 20, following the
pragmatic example of Ellington (1984, I11). Since the reduced frequency parameter
Q is infinite when U =0, it is no longer particularly helpful in distinguishing
amongst the different hovering regimes. A dimensionless amplitude may be
defined by the number of mean chord lengths travelled by the mid-point on the
wing, R/2:

(42)

This is also a measure of the mean distance of a wing chord from the unsteady
influence of its own starting vortex. Similarly, the instantaneous position from the
starting point at the end of a half-cycle can be expressed as the ratio, A =yr/c. In
comparisons with 2-D experiments, we let A = h/c, where h is the oscillation
amplitude of a chord motion given by x = hsin wt.
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6.2 Quasi-Steady Analysis

Normal Hovering. To provide weight support to the animal, there has to be a
horizontal component of the wing motion, and in the absence of any net horizontal
body motion, the wings themselves must therefore beat in a horizontal plane.
Acting within the mechanical constraints of the musculo-skeletal system, the
simplest way of achieving this is for the body to tilt toward the vertical, and this
indeed is the mode of hovering for hummingbirds and for several orders of insects
analysed in classic papers by Weis-Fogh (1972, 1973) and Ellington (1984, 1-VI).
Figure 19 shows the course of one wingbeat cycle in a hovering sphingid moth.
The time is spent approximately equally on the morphological up- and
downstrokes, at the ends of which the wings twist and rotate so that the stiffened
anterior part of the wing functions as the aerodynamic leading edge throughout.
The wing motion relative to the body is often assumed to follow a figure-of-eight
path, as reported for the hummingbird (Stople and Zimmer 1939), but the
measurements of Ellington (1984, I1I) on the kinematics of insects in free flight
show that this is not always so. Weis-Fogh (1973) introduced some very elegant
simplifications to the basic blade element analysis leading to Eq.(34). The
instantaneous lift 8L on a wing section (blade element) 4S can be expressed as:

X | [ dv?
OL(r,t)=3p x Cp(r,t) x 6S(r) x r ) (43)

First, based on observations of the kinematics, C, was assumed to be constant
over both the span, R, and over the stroke period, T. S is determined by the
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Fig. 19a-p. Normal hovering in Manduca sexta, as traced from every 10th frame of high speed

cinefilm at = 3450 frames s~ '. The view is from above. and the undersides of the wings are in
black. (Weis-Fogh 1973)
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second moment of area of the wing, for which analytical expressions were derived
for simple wing shapes. The mean lift over one wing stroke is thus

- & ;
L=gpw?$>*Cy x { c(r)r’dr + 71_ f cos? we dt, (44)
0 0

and the first integral is equal to acR"',_where o is the wing shape factor, and the
second evaluates exactly to 1/2. Since L must balance half the weight if there are
two wings, the mean lift coefficient is

8w

CL=—rr—.
L pwidiacR?

(45)
This is an extremely simple expression for estimating the mean lift coefficient
required to support the weight of a hovering animal, given just the kinematic
parameters in the denominator. In the majority of cases, normal hovering could
be satisfactorily explained on steady-state principles, and the required lift co-
efficients appeared to be quite modest (from 0.8 at Re, 1600, to 1.2 at Re, 6700).
However, all of the cases where the wingbeat was inclined significantly from the
horizontal required abnormally large values of C, and the steady state hypothesis
had to be rejected. This included the bat Plecotus auritus, the butterfly Pieris napi,
the hoverflies (Syrphinae) and the now famous chalcid wasp, Encarsia formosa.

These arguments have been re-evaluated by Ellington (1984, I-VI), based on
meticulous kinematic and morphological measurements. In addition to pointing
out certain methodological inconsistencies, he noted that the ladybird (Coccinella
7-punctata) and the crane-fly (Tipula obsoleta) would require mean lift coeflicients
of 1.7 and 1.2, respectively, too high at Re, = 10°. However, the measured wingbeat
kinematics were consistent with postulated unsteady mechanisms for extra lift
generation. Now, since the kinematics of these two species were not appreciably
different from the others, which nevertheless had plausible C, values, the
steady-state explanation seems suspect for those as well. This argument, which is
only strengthened when we recall that the calculated C, values are mean values
over the whole stroke, and that maximum values would have to be higher still,
leads to the opposite conclusion, namely that most hovering animals make con-
siderable use of unsteady rotational lift generation mechanisms. There are even
broader implications because the insufficiency of the proof by contradictionr method
has clearly been exposed - it cannot be used to show that unsteady mechanisms
are of no importance, it can only fail to show, on occasion, that steady-state
aerodynamics are adequate.

Inclined Stroke Plane. Hovering in birds and bats is accomplished by beating the
wings on an inclined stroke plane (Norberg 1976b; Dathe et al. 1984). The wingtip
traces out a path with an average angle of 20-30° to the horizontal, and the wir 1
is flexed and folded during the upstroke so that, although the upstroke may
generate some lift (Dathe and Oehme 1978) it is much less than on the downstroke,
and a crucial asymmetry is introduced into the contribution to weight support.
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Table 1. Mean downstroke lift coeflicients and dimensionless amplitudes for horizontal and
inclined stroke plane hovering

<. Species Reference P(degrees) Cu A
Bombus hortorum EL84 —-15 1.1 34
Episyrphus balteatus (HF07) EL84 -2 . 1.17 34

(HF08) 21 3.93 23

(HF08) 32 5.08 24
Aeschna juncea NA75 60 3-4+ 25
Amazilia (. WF72 11 2.3* 36
Ficedula hypoleuca NU75 30 6.0* 1.98
Columba livia DAS82 38 26 4.6
Larus ridibundus DAS2 41 2.0 44
Plecotus auritus NU76 30 4.3* 32

References: WF82, Weis-Fogh (1972); EL84, Ellington (1984, VI); NA75, R. Norberg (1975);
NU7S, U. Norberg (1975), DA82 Dathe (1982); NU76, U. Norberg (1976b). The asterisked
quantities were recalculated in Ellington (1984).

In insects, inclined stroke plane hovering is characteristic of hoverflies and dragon-
flies, where a,,, can remain high on the upstroke, but the vertical component of F
will still be reduced. Conventional aerodynamic analysis shows that this places
unreasonable demands on the lifting performance of the wing on the downstroke,
so that all animals using inclined stroke plane hovering must rely to some extent
on unsteady lift generation mechanisms. Table 1 summarises some data from
the literature and shows that estimated lift coefficients are uncomfortably or impos-
sibly high wherever B increases much beyond 15°. The value of 2.3 recalculated
by Ellington for the hummingbird in the horizontal stroke plane suggests that
here too the quasi-steady analysis fails.

6.3 Vortex Models

Theory. Specifically to remedy the deficiencies in the quasi-steady analysis, Elling-
ton (1978, 1980) introduced and refined (1984, V) a vortex theory of hovering flight.
The principle is to construct a reasonable and solvable mathematical model of
the wake vorticity distribution, based on the wing beat kinematics. The wake must
be allowed to convect with its own self-induced velocity, and the mechanical power
requirement is then computed from the mean rate of increase of wake kinctic
energy. The procedure is actually quite similar to that of the original momentum
jet model, only now a more accurate wake model is required. There are two obvious
corrections to be made to the steady, uniform momentum jet: (1) spatial corrections
to account for the fact that the wings do not sweep over the whole disc area, and,
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Fig. 20. The nonuniformities in space and time of the vortex wake of a hovering animal are
modelled by the superposition of two independent corrections to the uniform momentum jet.
(Assembled from Ellington 1978, 1980)

(2) temporal corrections to include the time-varying circulation distribution. In
the limit of a wing pair beating through an angle of 2z, at an infinite frequency,
we should recover the ideal momentum jet. A simplified illustration of these
corrections is given in Fig. 20. Physically, since vorticity can only be created at
the wing surface, and since the wings are oscillating in time with angular velocities
falling to zero twice per wingbeat (when vorticity must be shed into the wake),
the wake should be composed of a series of stacked, closed vortex loops, one
completed beneath each wing on every half-cycle. Mathematically, the first order
effect of these two small perturbations can be expressed as the addition of two
linearly independent corrections to the steady momentum jet model for the power:

P,=P.__(1+0+71) (46)

i,mom

¢ is a spatial correction which depends on the ratio of circulation required to
support the weight over the area actually swept by the wings (4, = #R?cos f), to
the circulation required if the whole disc (4 = nR?) were used. It is a positive
constant, vanishing to zero when 4, = A. t is a temporal correction which may
be expressed as 0.079s2, where s is a parameter defining the wake element spacing,
related to the ratio of the distances a/b in Fig. 20. When the spacing is zero, the
wake is continuous and t is zero also. Ellington (1984, V) should be consulted for
details. There are two immediate benefits from this analysis. First, one has a method
for calculating the induced power which takes reasonable account of unsteady
aerodynamic effects because it is based on a reasonable model of the vortex wake.
This analysis does not require assumptions concerning quasi-steady section lift
coefficients. Second, a more accurate estimate of the true induced velocities and
explicit corrections to the steady-state models enable quantitative estimates of the
effect of these steady-state assumptions to be made. Ellington estimated that the
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corrections were around 209 for normal hovering, and up to 609 for the inclined
stroke plane cases.

Rayner (1979c) formulated a model for hovering animal flight based on a wake
of stacked, coaxial, small-cored vortex rings. Provided that the core radius is small
compared to the ring radius, the system is effectively determined by two parameters;
the feathering parameter, f=w2/|u,|? is the square of the ratio of the steady
induced velocity in the momentum jet to the mean wingtip velocity, and, typically,
is almost an order of magnitude smaller in irsects than in birds. R’ is a measure
of the ring size with respect to the span, b; it depends on I'(y) on the wing, and
also on the area actually swept out by the wings, i.e. on ¢. Reasonable values
seem to be around 0.75. The correction g, to the actuator disc induced power
requirement (P; = o, P, ,,,..) could be written

095 1.2
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For insects, o, is close to 1, and corrections to the steady momentum jet model
were estimated to be typically 10-15%,. Calculations for Norberg’s Ficedula data,
on the other hand, showed g, = 1.8, a considerable difference from the momentum
jet model, implying significantly increased wake energy losses. This is related to
the increased wake element spacing, which in turn derives from the inactive
morphological upstroke. The implication is that “avian” hovering places un-
attainable demands on the aerobic power output of the flight muscles of most
birds, which, therefore, do not hover, except momentarily. In general, where the
vortex models of Ellington and Rayner overlap, as in the case of hovering insect
flight, the numerical results and conclusions are quite similar. A detailed
comparison appears in Ellington (1984, V).

It should be noted that the vortex wake models are not free of assumptions
and simplifications. Although it is true that no steady-state wing section lift
coeflicients need be invoked, the generation of the wake elements with a certain
size, R’, say, with respect to the wing shape and kinematics does implicitly assume
a certain circulation distribution on the wing in order to create this pattern of
wake vorticity. This capacity for ignoring the complex details of the circulation
and lift on the wing itself is precisely one of the strengths of vortex wake models,
but the validity of the assumed wing circulation or core vorticity distributions is
difficult to confirm. In view of the problems in interpreting the existing quantitative
wake velocity measurements, the presumed roll-up of shed vorticity into simple
wake elements with predicted R’ cannot yet be regarded as verified. Despite these
reservations though, the closed vortex loop wake models are easily the most
realistic, solvable, formulations available for slow and hovering flight, and overall
corrections due to complex wake geometries and deformations may yet prove to
be small.

Experiment. Maxworthy (1979) constructed a simple 3-D mechanical model of a
pair of rigid wings which rotated through an angle of 27 in a horizontal plane,
like an idealised hovering wing pair (the geometry is similar to the insert of Fig. 21).
When the wings start and finish pressed together, the final structure in the wake
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1s a large vortex ring, with a smaller one of opposite-signed circulation inside it,
shed from the inboard trailing edge of each wing. This, together with observations

_of vortex rings in the wakes of birds in slow flight, indicates that complete vortex
rings may result when the stroke amplitude, ¢, is high. On the other hand, when
the wing tapers to very small chord lengths at the root, or is separated from the
body by a small gap, there is likely to be strong vortex shedding in the neighbour-
hood of the root, where the normal velocities are also small. Dathe et al. (1984)
have observed single closed vortex loops beneath models of isolated rectangular
wings beating in a horizontal plane, and this is to be expected when there is no
possibility of mutual wing interference effects. In this respect, the flow is just as
postulated in Ellington’s vortex model, and will probably be the form of the wake
when ¢ is small so that the wings operate in effective isolation, such as in the inclined
stroke plane hovering of the hoverflies, for example.

It is extremely hard to visualise the wake of a real hovering animal. Ellington
(1978, 1980) presented streak photographs of a tethered crane-fly (Tipula paludosa)
and a butterfly (Pieris brassicae). Large vortex-dominated motions can be dis-
tinguished over the wings of Pieris, but the Tipula wake structure was indistinct.
Coherent vortex structures could be seen in phase-averaged photographs of
neurogenically forced wing motions in tethered dragonflies (Libelluala luctuosa)
by Somps and Luttges (1985), but the overall picture was incomplete.

If the vortex theories can confirm that unsteady mechanisms must be operating
in nearly all cases of hovering flight, they do not indicate what those mechanisms
might be. In the absence of definitive experimental evidence from the real animal,
physical mechanisms must be postulated based on the known behaviour of fluids,
or on mechanical models.

6.4 High-Lift Mechanisms

Dynamic Stall. Animpulsively started aerofoil must move through more than four
chord lengths to reach 80% of the asymptotic circulation. This is known as the
Wagner effect, which reduces the lift initially available to an accelerating wing (cf.
Chow and Huang (1982) for solutions for flat-plate and finite thickness aerofoils,
and Auerbach (1987) on the difficulties in satisfactory modelling of even this
geometrically-simple, separated flow). If, however, the aerofoil is started at a
geometric angle of attack higher than the steady-state stalling angle, «_,,, large
transient circulations can be built up during the first few chord lengths of travel,
when the lift exceeds the steady-state values. Both rotational and translational
accelerations can produce this effect up until 4 = 4. Dynamic stall (see McCroskey
(1982) for a review) may be accompanied by leading edge separation and flow
reattachment before the trailing edge, forming a separation bubble whose increase
in circulation is added to the normal wing circulation. Eventually, the bubble
moves away and convects downstream over the wing surface, with a very sharp
drop in lift, but if the wing is oscillating continuously, the unsteady forces may
remain favourable through much of the cycle. Favier et al. (1982) have shown that
coupled, in-phase variations in U and a (AU = 0.68U; Aa = 6°) of an accelerating
and pitching aerofoil produced mean lift coefficients over the oscillation cycle of
2.66 times the steady-state value, for k =0.59, A =0.57, and Re_ =8 x 10*.
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At lower Re,, stall is less abrupt, and useful lift can be generated even at high
a, so dynamic stall mechanisms might be less effective. However, the phenome-
non of flow separation at a sharp edge is almost Re-independent. Large local
decelerations in the flow and high concentrations of vorticity at the surface can
cause separation even at Re <0.1. The initial shear layer instability is inviscid,
and while viscous effects dominate in the separated region itself, affecting stability
and reattachment of the flow there, roll-up of the shed vorticity will still occur.
Maxworthy’s (1979) experiments on model wings showed almost identical
separated flows at Re,, = 30 and Re, = 10* (Re,, = jc?/v) although the vortex cores
were noncircular at the lower Re,. This spans almost the entire range of Re of
interest in insect flight. The flow visualisations of impulsively started aerofoils at
16 < Re, <5.2 x 10* (Re, = "/*¢*?/v) by Freymuth (1985) clearly demonstrate that
the onset of flow separation is not particularly dependent on Re, even from a smooth
profile, although the shape and structure of the separation vortices themselves can
vary dramatically.

Wing rotation and acceleration at the ends of the wingbeat are likely to be
of great importance in hovering flight over a broad range of length scales. Even
when mean steady state lift coeflicients appear adequate, they could not be achieved
without some means of avoiding the Wagner eflect, most likely through some
dynamic stall process.

Wing Interference. Apart from the alteration of the effective incidence angle due to
the unsteady induced flow from previous wingbeats, there are two possible
mechanisms for wing interference in a solitary hovering animal. The first involves
interactions between opposing wings as they approach one another at the ends
of the wing strokes. An extreme example of this was discussed by Weis-Fogh (1973)
and Lighthill (1973) based on wing motions observed in Encarsia formosa, which
apparently operated with C, 2.3, an impossible feat for steady aerofoils at
Re, = 20. The wing kinematics were distingushed by an unusually prolonged “clap”
phase at the end of the upstroke, when the dorsal wing surfaces were pressed
together. When they opened on the subsequent downstroke, they did so by rotation
about their trailing edges which remained connected until the including angle
approached 120°, when they parted with opposing sections translating away from
each other. Air rushing into the opening gap could produce very large circulations
around each wing, without any vortex shedding, since the circulation around each
wing was equal in magnitude and opposite in sign, and the total around both
wings (which were still connected) was still zero! This surprising result, a new
inviscid mechanism of lift generation, showed that high instantaneous lift forces
would be generated by such flows, and was consistent with the observed vertical
accelerations of the body. The experiments of Maxworthy (1979), numerical
simulations by Haussling (1979), and theoretical analysis by Edwards and Cheng
(1982) revealed that very large separation vortices would be generated at the sharp
leading edge, significantly enhancing the circulation, which continued to increase,
even beyond including angles of 120°. Calculations from instantaneous force
measurements and simultaneous quantitative flow visualisations over an opening
wing pair at Re, =3 x 10° by Spedding and Maxworthy (1986), showed mean lift
coefficients of 6.9-8.5 over the wing opening time. It was not necessary for the wings
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to be completely closed to achieve this result. Significant performance enhance-
ments are clearly achievable, though the wing opening time history can strongly
affect the growth of circulation in the separation vortex, which is turbulent at this
Re.

Ellington (1980, 1984, 1V) has commented on the likely modifications of the
basic clap and fling mechanics due to wing flexibility and departures from the
idealised rigid wing kinematics, and Fig. 21a shows two wing sections approaching,
but not touching, and then peeling apart as the wings flex when the leading edge
initially begins to rotate. In the second variation (Fig. 21b), the wings meet at the
trailing edge, but never at the leading edge, and separation is again preceded by
a flexible peel motion. The available but incomplete experimental evidence suggests
that these mechanisms ought to be successful in producing high unsteady lift forces,
and that this type of motion is quite widespread in nature. The near or partial
clap and fling motions of many birds and bats in take-off and landing manoeuvres
and of many insects in hovering and rapidly accelerating flight may ultimately be
crucial for the success of these species, which perform many wingbeats of essentially
steady flight, but also absolutely depend on the ability to occasionally generate
high transient lift forces.

The second case of wing interference is specific to insects and concerns the
interaction between fore- and hindwing pairs. Wing interference was calculated to

R =

7 h:
W Y %\33

D2 = \ O _nf

Fig. 21a-c. Unsteady lift generation mechanisms. The plane of section is normal to the long
axis of the wings, which thus appear as chord sections. If the wings beat in a horizontal plane,
then the sections lie on the surface of an imaginary vertical cylinder which intersects the wings
at mid-span (inset). a and b Modified versions of the clap and fling motion. ¢ The flex mechanism
for an isolated wing in rotation. (Ellington 1984, IV)
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be responsible for only 2% corrections in Jensen’s (1956) analysis of locust flight,
but the phase relations between wing pairs in dragonflies nevertheless appear to
conform to theoretical predictions based on optimised wake energy extraction
(Sect. 5.4). Reavis and Luttges (1988) measured the lift and drag forces on a
tethered dragonfly and correlated them with simultaneous flow visualisations.
Leading edge separation vortices were produced over both wings and those
produced by the forewing convected downstream to interact with the hindwing.
Interpretation of the force records is complicated somewhat by the fact that the
inertial contribution, which Azuma and Watanabe (1988) have demonstrated may
be equal in magnitude to the aerodynamic force, cannot be isolated. Extremely
complex flows were described by Saharon and Luttges (1989) for mechanical models
of dragonfly wing pairs, and lift and thrust control were interpreted from the
varying wing-vortex interactions produced with different phase angle differences.
According to this view, both the magnitude and direction of the aerodynamic
forces are dominated by the interaction of the lifting surfaces with coherent vortices
shed during different phases of the wingbeat.

Isolated Rotation. From the discussion of dynamic stall, it is clear that single wings
in isolation may generate high transient lift values by rotation alone. The most
plausible mechanism has been suggested by Ellington (1984, V), coined the “flex”
(Fig. 21c). Consider a wing section towards the end of a stroke (top of the figure).
Various arguments have been advanced that it is likely to have a separation bubble
generated by rotational acceleration at the beginning of the stroke. Since the
circulation must be reversed in sign before the next stroke, this vorticity must be
shed with the same sign as the starting vortex for the next stroke. If the wing
rotates as it decelerates towards the end of the stroke until the section is almost
vertical, there will be vortex shedding, but now of opposite sign at the leading
edge, while the circulation from the separation bubble is left around the trailing
edge. If the wing rotates about this trailing edge, a new separation bubble may
be formed at the leading edge without the generation of extra circulation at the
stationary trailing edge. The previous separation vortex appears as a combined
starting and stopping vortex. The wing flexion appears to make such kinematics
possible for the hoverflies observed by Ellington, although all that is really required
is that rotation should occur about the stationary trailing edge. Since the starting
and stopping vortices are combined, a hoverer using the flex mechanism should
have half as many wake vortices as one which does not, and they should be spaced
twice as far apart in the vertical direction. The correction o to the induced power
requirement in Eq. (46) should be similarly affected, as the wake energy losses are
reduced. Freymuth (1990) has published photographs of the wake of a 2-D flat
plate in combined translation and pitching oscillations, and one of his modes of
oscillation is similar to that of Fig. 21c for a rigid plate rotating about the trailing
edge. Figure 22 is redrawn based on his photographs. It is unfortunate that the
flow over the surface cannot be seen, but the starting and stopping vortices of
successive strokes are obviously combined during this motion. For A=3 and
Re, = wAc?/v=1.7 x 103, lift coefficients of 2.5-3 were estimated from the time
averaged jet impulse. This is quite strong, though not conclusive, evidence for the



104 G.R. Spedding

e
Qe
S
@4

&=
\\

®
%

@

)\6

(&
_.Q@c hg?/g G}a

= NN

&
)
i

9,
A

{

2 (©Op
>

© %@’/
S (109 N

Fig. 22a-1. The wake of a rigid 2-D plate in oscillating pitch and translation. The first frame
is in mid-stroke, moving from left to right, and the time sequence proceeds by column for one
complete oscillation cycle. The arrow follows the life history of a single vortex which begins as
a leading edge vortex (a-c), and ends as a combined starting and stopping vortex (f, g), convecting
away in the far wake thereafter. The plate itsell could not be seen as it is obscured by the
mounting strut, whose rectangular shilhouette is shown in outline here. The line inside this is a
rough estimate of the location and orientation of the plate, based on information elsewhere in
the paper. The pitching and heaving motions are combined with a 90° difference in phase so
that rotation occurs approximately about the trailing edge at the ends of each stroke. The lines
in the flow represent concentrations of TiCl, which originates on the surface of the plate, as does
the vorticity. A =0.5, Re, = 340. (Redrawn from photographs in Freymuth 1990)

practicability of Ellington’s flex mechanism, and it would be interesting to see
clear quantitative demonstrations of this.

6.5 Power Requirements

The total mechanical power required for hovering flight is the sum of the power
required to produce the aerodynamic forces,

Pa = Pl. + Ppro‘ (48)
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together with the power required to accelerate the wings to and fro during the
wingbeat. This will have two components, one to accelerate the second moment

. of the wing mass, m,, and the other to accelerate the second moment of the virtual

mass, v,, which is related to the mass of the air influenced by the accelerating
wing. The virtual wing mass is usually calculated from the mass of an imaginary
cylinder of air with diameter equal to the wing chord and length equal to R. The
mean, mass-specific power required to accelerate the wing at the beginning of a
wing stroke thus has the form,

2
P:“ = —(mz + v,) (dj?) /mg. (49)

In the analysis of forward flight, this term was ignored since d¢/dt is usually small,
but this is no longer true for hovering flight. Moreover, no useful net forces can
be derived from this equation as d¢/dt is zero when averaged over the whole
wingbeat cycle. Unfortunately, decelerating wings still require positive expenditure
of metabolic energy, albeit only 1/10th of that required to accelerate them in the
first place. If we make a charitable assumption that the deceleration occurs almost
free of charge, then, in the absence of any elastic energy storage mechanism, the
total specific power required is

P*=P*+2P* (50)

acc*

from the components in Egs. (48) and (49). If there were perfect elastic energy
storage, the kinetic energy of the wings would be converted at the end of every
wmg stroke to elastic strain energy, which would be returned to reaccelerate the
wings on the following stroke, and P* would equal P* alone. Ellington calculated
that P* for his hovering insects was 17-19 W N-LIf the maximum power output
of insect fibrillar muscle is roughly that of vertebrate striated muscle, then the
maximum specific power available is about 26 W N~ ! (Weis-Fogh and Alexander
1977). This leaves almost no margin for accelerating the wings. Since this power
requirement is large, estimated to be P* =~ 1.4-5.9 P*, there must be substantial
elastic energy storage in hovering insect flight. Given the small power margin, the
elastic efficiency must also be high. Deformations of the cuticular thoracic box,
and of the protein resilin, and passive stretching of the fibrillar flight muscles all
provide possible elastic storage mechanisms in insects, but equivalents do not
appear to have been developed by vertebrates. Calculations similar to these for
Weis-Fogh's hummingbird, Amazilia, indicated that without elastic storage [i.e.
using the full form of Eq. (50)], the mechanical power requirement was about
21 WN !, which would require a conversion efficiency of around 24%;. This is an
entirely reasonable result, and it also indicates that the flight of hummingbirds is
dominated by inertial power requirements. At high contraction rates, elastin has
high internal damping and is not suitable as an elastic resonator (Weis-Fogh 1972),
and the apparent failure of vertebrates to evolve a substitute has probably
considerably limited their access to motions involving high frequency oscillation.
Hummingbirds may well represent the practical limit. On the other hand, the same
aerodynamic analysis leads to the conclusion that the considerable success of
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insects in slow or hovering flight, and the exploitation of microenvironments is
due in significant measure to the combined elastic properties of the flight
. musculature, exoskeleton and specialised protein rubbers.

7 Concluding Remarks

This chapter has reviewed the current state of knowledge concerning aecrodynamic
mechanisms in animal flight, by examining the various analytical models and their
predictions and consequences. These provide a [ramework within which the
evolution and adaptation of natural flight systems can be understood. There is
considerable scope for refinement and improvement of many of the model
techniques, but even the simplest, the venerable actuator disc, has been shown to
be successful, as judged by the ability to make useful, testable predictions of
behaviour and morphology.

It is hoped that the steady/unsteady debate has now run its course. The broad
spectrum of aerodynamic mechanisms and analytical techniques is poorly
represented by insisting on a binary classification. Progress in theory and experi-
ment in the last 10 years has allowed the problem to be recast in a more physical
and mathematically-precise fashion, and the aerodynamic effects of the unsteady
kinematic and 3-D corrections have been explicitly calculated over a large frac-
tion of the parameter space relevant to animal flight. In many cases, it ought to
be possible to attempt an estimate of the magnitude (and sign) of at least the first
order corrections. It does not seem unreasonable that these numerical estimates
could be used to generate families of possible power curves, or curves with error
bars or envelopes. Such calculations are conspicuously rare in the literature.

On the other hand, establishing the role of the dynamics of viscous-inviscid
interactions in the boundary-layer and strongly separated regions is of critical
importance. Fluctuating or periodic growth and bursting of separation regions is
another source of unsteadiness in the flow (as opposed to the kinematics, measured
by k Q). Related to this point, there is a clear need for further quantitative
investigations of the fluid dynamics of simple bodies in the Reynolds number range
10'-10%, with rotational and translational accelerations appropriate for animal
flight. In keeping with the introductory comments on scientific models, results for
the most basic shapes are the more generalisable, starting with 2-D flat plates. The
accurate determination of the normal pressure and skin friction drags, even on
simple fixed bodies and wing shapes, also remains a major stumbling block and
source of uncertainity in the aerodynamic calculations.

Much remains to be discovered concerning time varying separated flows,
stability and control, the effects of flexibility and porosity of membranous and
feathered surfaces, and the role of passive and active changes in geometry of real
animal wings. Aspects of manoeuvrability and agility, structural robustness and
damage repair have also been neglected here. Some of these phenomena may be
of interest only to a small number of fluid dynamicists, while others will have
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profound consequences for the balance of energetics of the organism. Ultimately
the correct sorting category can only be assigned when the details are known
sufficiently for accurate model simulations.

Note. An electronic accompaniment to this chapter is available in the form of
Mathematica notebooks where analytical and numerical examples of the model
equations may be manipulated and plotted. Readers interested in receiving a copy
are invited to send a formatted Macintosh disc to the author.

Acknowledgments. 1 would like to thank my friends and colleagues, Professors FK
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