1: Challenges

It grew out of the trio’s efforts to find solutions for a classic
mathematical problem—the “Traveling Salesman”
problem—which has long defied solution by man, or by the fastest
computers he uses.

—IBM Press Release, 1964.!

An advertising campaign by Procter & Gamble caused a stir among
applied mathematicians in the spring of 1962. The campaign featured
a contest with a $10,000 prize. Enough to purchase a house at the time.
From the official rules:

Imagine that Toody and Muldoon want to drive around the country
and visit each of the 33 locations represented by dots on the contest
map, and that in doing so, they want to travel the shortest possible
route. You should plan a route for them from location to location
which will result in the shortest total mileage from Chicago, Illinois
back to Chicago, Illinois.

Police officers Toody and Muldoon navigated Car 54 in a popular
American television series. Their 33-city task is an instance of the traveling
salesman problem, or TSP for short. In its general form, we are given a
collection of cities and the distance to travel between each pair of them.
The problem is to find the shortest route to visit each city and to return to
the starting point.

Is the general problem easy, hard, or impossible? The short answer is
that no one really knows. This is both the mystery and attraction of this
famous challenge in computational mathematics. And much more than a
struggling salesman is at stake. The TSP is the focal point of a larger debate
on the nature of complexity and possible limits to human knowledge. If you
are ready for action, then a sharp pencil and a clean piece of paper are all
you may need to give a helping hand to the salesman and possibly to make a
quantum leap in our understanding of the world in which he or she travels.
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Figure 1.1

Car 54 contest. Image
courtesy of Procter &
Gamble.
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Tour of the United States

Despite its nasty reputation, the TSP is an easy enough task from one
perspective: there are only finitely many possible routes through a given
set of cities. So a 1962-era mathematician could have checked each possible
Toody-Muldoon tour, recorded the shortest, sent the solution to Procter
& Gamble, and waited for the $10,000 check to arrive in the mail. A simple
and flawless strategy. With one possible catch. The number of distinct tours
is exceedingly large to consider checking one by one.

This difficulty was noticed in 1930 by the Austrian mathematician and
economist Karl Menger, who first brought the challenge of the TSP to
the attention of the mathematics community. “This problem is of course
solvable by finitely many trials. Rules that give a number of trials below the
number of permutations of the given points are not known.”* A tour can
be specified by announcing the order in which the cities are to be visited.
For example, if we label the 33 destinations of Toody and Muldoon as A
through Z and 1 though 7, that is, A for Chicago, B for Wichita, etc., then
we can record a possible tour as
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ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567

or any other arrangement of the 33 symbols. Each such arrangement is a
permutation of the symbols. The ordering implied by the arrangement is
circular, in that we travel from the last city back to the first. So we can
record the same tour in 33 ways, depending on which city we put in the
first position. To avoid such overcounting, we may as well always start with
city A. This leaves 32 choices for the second city, 31 choices for the third
city, and so on. Altogether, we have 32 x 31 x 30 x --- x 3 x 2 x 1 tours
to consider. This is the total number of permutations of 32 objects. It is
written as 32! and spoken as 32 factorial.

In the Procter & Gamble contest we can save effort by noting that the
distance to travel between Chicago and Wichita is the same as the distance
between Wichita and Chicago, and this is true also for every other pair of
cities. With such symmetry it does not matter in which direction we travel
around a tour, so an ordering

ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567
is the same as its reverse
7654321ZYXWVUTSRQPONMLKJIHGFEDCBA.

We can therefore cut down by half our count of the 33-city tours, leaving
only 32!/2 orderings to check. Before you go ahead and get out your
Ticonderoga #2 pencil, note that this is

131,565,418,466,846,765,083,609,006,080,000,000

distinct tours that we must examine.

These days we would of course employ a computer to run through the
list. So let’s choose a big one, the $133,000,000 IBM Roadrunner Cluster
of the United States Department of Energy. This 129,600-core machine
topped the 2009 ranking of the 500 world’s fastest supercomputers, deliv-
ering up to 1,457 trillion arithmetic operations per second.’ Let’s assume
we can arrange the search for tours such that examining each new one
requires only a single arithmetic operation. We would then need roughly 28
trillion years to solve the 33-city TSP on the Roadrunner, an uncomfortable
amount of time, given that the universe is estimated to be only 14 billion
years old. No wonder Menger was unsatisfied with the brute-force solution
to the problem.

When considering the implications of this quick analysis, we must
keep in mind that Menger writes only that faster rules for solving the
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Figure 1.2
Drummer’s Delight. Newsweek,
July 26, 1954, page 74.

salesman problem are unknown, not that such rules are out of the question.
John Little and coauthors sum this up nicely in the following comment
on the Procter & Gamble contest. “A number of people, perhaps a little
over-educated, wrote the company that the problem was impossible—an
interesting misinterpretation of the state of the art.” Little et al. went on to
describe a breakthrough in TSP solution methods, but they could not push
their computer codes far enough to actually solve the 33-city challenge. It
appears that no one in the country was able to produce a route that could be
guaranteed to be the shortest of all possible tours for Toody and Muldoon.

The 33-city problem was definitely a tough nut to crack, but if we turn
back the clock to 1954, then we find a team that almost certainly would
be able to deliver the optimal route, together with a written guarantee that
their solution is the shortest. The team tackled a larger touring problem
through the United States, visiting a city in each of the 48 states, as well as
Washington, D.C. This particular challenge had been circulating through
the mathematics community since the mid-1930s. Its solution was reported
in Newsweek.?

Finding the shortest route for a traveling salesman—starting from
a given city, visiting each of a series of other cities, and then
returning to his original point of departure—is more than an
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after-dinner teaser. For years it has baffled not only goods- and
salesman-routing businessmen but mathematicians as well. If a
drummer visits 50 cities, for example, he has 10%% (62 zeros) possible
itineraries. No electronic computer in existence could sort out such
a large number of routes and find the shortest.

Three Rand Corp. mathematicians, using Rand McNally road-map
distances between the District of Columbia and major cities in each
of the 48 states, have finally produced a solution. By an ingenious
application of linear programming—a mathematical tool recently
used to solve production-scheduling problems—it took only a few
weeks for the California experts to calculate “by hand” the shortest
route to cover the 49 cities: 12,345 miles.

The California experts were George Dantzig, Ray Fulkerson, and Selmer
Johnson, part of an exceptionally strong and influential center for the new
field of mathematical programming, housed at the RAND Corporation in
Santa Monica.

The RAND team’s guarantee involves some pretty mathematics that we
take up later in the book. For now it is best to think of the guarantee as a
proof, like those we learned in geometry class. The Dantzig et al. proof es-
tablishes that no tour through the 49 cities can have length less than 12,345
miles. Matching the proof with their tour of precisely this length shows that
this particular instance of the TSP has been settled, once and for all.

Dantzig and company missed out on the $10,000 contest, but we can
report that a computer implementation of their ideas makes easy work of
the 33-city TSP. A shortest route for Toody and Muldoon is depicted in
Figure 1.3. Although no one in 1962 knew for certain that this was the
shortest possible tour, a number of contestants did find and report this

Figure 1.3
Optimal tour for
Car 54 contest.
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same ordering. Among the people tied for first place in the contest were
mathematicians Robert Karg and Gerald Thompson, who created a hit-
or-miss heuristic strategy that produced the winning solution.® And the
story has a happy ending, at least for the mathematics community. As a
tiebreaker, contestants were asked to write a short essay on the virtues of
one of Procter & Gamble’s products. Thompson’s prose on soaps took a
grand prize.

An Impossible Task?

The RAND team’s work put an end to the 48-states challenge, but it did
not finish off the TSP. One big success did not imply the team could handle
other, possibly larger, instances of the problem. In fact, if Las Vegas were
taking bets on the outcome, the odds-on favorite among mathematicians
would be that we will never fully solve the TSP. We must be careful here. By
a solution we mean an algorithm, that is, a step-by-step recipe for producing
an optimal tour for any example we may throw at it. Just finding the best
route through the United States or any other country does not do the job.

Picking up on the expected difficulty of the general TSP challenge, the
science-fiction story “Antibodies”, by Charles Stross, chronicles doomsday
events following the discovery of an efficient solution method for the
salesman.” One can hope that a brilliant insight into the TSP will not signal
the end of the world as we know it, but it will certainly turn the planet
upside down and give it a good shake. To see why, let’s start with a series of
quotes.

‘It seems very likely that quite a different approach from any yet
used may be required for successful treatment of the problem. In
fact, there may well be no general method for treating the problem
and impossibility results would also be valuable.’

—Merrill Flood, 1956.8

‘T conjecture that there is no good algorithm for the traveling
salesman problem.’

—TJack Edmonds, 1967.°

‘In this paper we give theorems which strongly suggest, but do not
imply, that these problems, as well as many others, will remain
intractable perpetually.’

—Richard Karp, 1972.1
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The authors of these remarks are three giants of traveling-salesman
research. Merrill Flood rallied support for the problem in the 1940s; more
than anyone else, Flood is responsible for the emergence of the TSP as a
fundamental topic of study. Discussing the state of the problem in 1956,
Flood first raised the possibility that efficient methods may simply never
exist. This point was hammered home by Jack Edmonds a decade later
in what amounts to a mathematical bet against the hope for a general
solution method. Edmonds was modest in describing the support for his
bet: “My reasons are the same as for any mathematical conjecture: (1) It
is a legitimate mathematical possibility, and (2) I do not know.” But he
is teasing us with these words: Edmonds is one of the profound thinkers
in twentieth-century mathematics and he certainly had something deep in
mind when placing money against the TSP. Five years later, the true nature
of the bet was made clear in a publication by the great computer scientist
Richard Karp, connecting the TSP with a host of other computational
problems. We save the details of Karp’s theory for chapter 9, but a quick
account will be enough to understand why the characters of “Antibodies”
shuddered at the announcement of a fast TSP algorithm.

Good and Bad Algorithms

When Edmonds writes “good algorithm,” he uses the word good in the
same way as you and I: an algorithm is good if it can solve problems in an
amount of time we find acceptable. For this to make sense in mathematics,
however, he had to make “good” into a formal notion. Clearly, we cannot
expect every example of the TSP to be solved, say, in under a minute by a
human or by one of our machines. We must at least be willing to allow for
the solution time to grow as the number of cities grows. The point to be
decided is what rate of growth is acceptable.!!

Figure 1.4

Jack Edmonds, 2009.
Photograph courtesy
of Marc Uetz.




Chapter 1

Table 1.1
Running time on a 10°-operations-per-second computer.
n=10 n=25 n =50 n=100
n’ 0.000001 seconds 0.00002 seconds 0.0001 seconds 0.001 seconds
2" 0.000001 seconds 0.03 seconds 13 days 40 trillion years

Let’s use the symbol n to indicate the size of a problem; for the TSP
this is the number of cities. Reading a list of locations to visit takes time
proportional to #, so a tough manager might demand that we produce
an optimal tour also in time proportional to n. Such a manager would be
wildly optimistic. Edmonds himself allows for faster rates of growth in the
running time, but with an insightful break between good and bad. A good
algorithm is one that comes with a guarantee to complete its work in time
at most proportional to #* for some power k. The power k can be any value,
such as 2, 3, or more, but it must be a fixed number—it cannot increase as
n gets larger. Thus, a growth rate of n° is good, but growth rates of n" and
2" are bad. To give you a feeling for this, in table 1.1 we have calculated the
running times for a few values of n, assuming a computer can handle 10°
instructions per second. If n = 10, the bad algorithm is fine. But you don’t
want to be stuck behind a 2" algorithm if n gets up to 100 or so.

Edmonds’s formal notion of “good” might not always agree with
our intuition. An algorithm that requires n'%% steps is not appealing if
we need to solve an instance of the TSP with 100 cities. Nonetheless,
his idea revolutionized the study of computing. The precise good/bad
dichotomy creates real targets for mathematicians, fueling great interest in
computational issues. And on the practical side, once a problem is shown
to have a good algorithm, researchers pull out all stops in a race to decrease
the value of the power k, typically getting down to running-time bounds
proportional to n%, n’, or n*, and computer codes capable of handling large
instances.

BRUTE-FORCE DyNAMIC ;
SOLUTION: PROGRAMMING SELUNG ON EBAY:
Figure 1.5 0(n) ol 0(1)
Travelling Salesman ‘ @ (f‘l 2 )
STILL WORKING
Problem. Image ON YOUR ROUTE?

courtesy of Randall
Munroe, xkcd.com.
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Unfortunately for TSP fans, no good algorithm is known for the
problem. The best result thus far is a solution method, discovered in 1962,
that runs in time proportional to #%2". Although not good, this growth rate
is much smaller than the total number of tours through # points, which we
know is (n — 1)!/2, perhaps satisfying the curiosity of Menger.

The Complexity Classes P and NP

Edmonds’s dichotomy carries over to computational problems, dividing
them into those for which good algorithms exist and those for which they
do not. The former problems are the ones we like, and they are known
collectively as the class P.

Why P and not G? Well, researchers were not entirely comfortable
with the emotional charge that comes with the word “good,” and it became
standard to use the term polynomial-time algorithm. So ‘P for polynomial.

The definition of P is clear-cut, but it can be tricky to tell whether
or not a given problem belongs to this “good” class. It may well be that
the TSP is in P and we just haven’t yet discovered the good algorithm
to prove its membership. A glimmer of hope is that at least we know
a good tour when we see one. Indeed, suppose our challenge is to find
a tour, say, of length less than 100 miles. If someone hands us such a
solution, then we can check easily that it does indeed beat the 100-mile
target. This property makes the TSP a member of the class known as NP,
consisting of all problems for which we can check the correctness of a
solution in polynomial time. The pair of letters stands for non-deterministic
polynomial. The unusual name aside, this is a natural class of problems:
when we make a computational request, we ought to be able to check that
the result meets our specifications.

The Big Question

Could it be that P and NP are two names for the same class of problems?
It is possible. An approach for proving this was laid out in a breakthrough
result by Stephen Cook in 1971. (No relation to me, although I have enjoyed
a number of free dinners due to mistaken identity.) Cook’s Theorem states
that there exists a problem in /P such that if we have a good algorithm
for this single problem, then there is a good algorithm for every problem in
NP. In fact, Cook, Karp, and others have shown that there are many such
N'P-complete problems, the most prominent being the TSP itself.

Finding a good algorithm for an A'P-complete problem would show
that P is equal to A'P. Thus, the first person to discover a general method
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for the TSP will bring home considerably more cash than the winner of
the Procter & Gamble contest: the Clay Mathematics Institute has offered a
$1,000,000 prize for either a proof or disproof that P = N'P.

The betting line is that the two problem classes are not equal, but there
is no great theoretical reason for thinking this is the case. It is simply a
feeling that equality is too much to ask: any problem we can formulate
in a verifiable manner would immediately have an efficient method of
solution. In fact, current encryption systems make use of the assumption
that certain /P problems are difficult to solve. Internet commerce would
grind to a halt if there were quick algorithms for these members of N'P;
this would be like handing code breakers and hackers a Swiss Army knife
for snooping data.

The downfall of society in “Antibodies” was more insidious, however,
than simply failures in encryption—artificial intelligence programs sud-
denly became greatly more effective and took over their biological masters.
It seems probable we could deal with such pesky machines, and it is likely
the good consequences of P = NP would greatly outweigh the bad. In a
2009 survey article, Lance Fortnow wrote: “Many focus on the negative,
that if P = NP then public-key cryptography becomes impossible. True,
but what we will gain from P = AP will make the whole Internet look
like a footnote in history.”'* His argument is that optimization becomes
easy, thus salesmen can find their shortest routes, factories can run at peak
capacity, airlines can manage their schedules without delays, and so on.
Simply put, we will better utilize the resources available in our world. Vastly
more powerful tools would also be available in science, economics, and
engineering, providing a steady flow of breakthroughs to keep Nobel Prize
committees busy for years to come. A rosy world, but the bets are against it.

The resolution of P versus NP is clearly one of the great challenges of
our time. In approaching an A/'P-complete problem like the TSP, however,
it is important not to get too caught up in possible ramifications of a
good solution method. The lofty implications aside, the problem comes
down to a simple routing of a salesman. An ingenious idea could turn
the scales.

One Problem at a Time

Until someone steps forward with a possibly earth-shattering result on the
general complexity question, what is to be done with the TSP? Well, facing
the salesman head on, the clear target is the solution of larger and more
difficult instances of the problem.
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The TSP is the standard bearer of a pragmatic school of research
known as algorithm engineering.!* The motto here is to not take no for
an answer. Theoretical considerations may suggest that once we reach
a certain size there exist instances of the TSP that necessarily take an
exorbitant amount of computation, but this does not imply that whenever
we see a specific large example we must give up and resort to a rough guess
for a tour. Indeed, this take-no-prisoners attitude has led the community
to techniques and computer codes capable of solving examples of almost
unbelievable complexity.

Knocking off a previously unsolved challenge instance is a heralded
event among researchers, akin to scaling a new Himalayan peak or running
the 100-meter dash in record time. It is not that we have a desperate thirst
for the details of particular optimal tours, but rather a desperate need to
know that the TSP can be pushed back just a bit further. The salesman may
defeat us in the end, but not without a good fight.

From 49 to 85,900

The heroes of the field are Dantzig, Fulkerson, and Johnson. Despite the
dawning of the computer age and a steady onslaught of new researchers
tackling the TSP, the 49-city example that Dantzig et al. solved by hand
stood as an unapproachable record for seventeen years. Algorithms were
developed, computer codes written, and research reports published, but
year after year their record held its ground. The long run was finally
snapped in 1971 by IBM researchers Michael Held and Richard Karp; the
same Karp who studied TSP impossibility results, clearly not satisfied with
theory alone. The test instance in this case consisted of 64 points dropped
at random into a square region, with travel costs set to the straight-line
distances between pairs of points.

The algorithm of Held and Karp reigned supreme for several years, with
a number of teams tweaking the method in attempts to squeeze out greater
performance. But the Dantzig et al. approach struck back in 1975, when
Panagiotis Miliotis eclipsed the Held-Karp record by employing a variant of
the original RAND idea to compute the shortest route through 80 random
points.

The Miliotis work hinted at the fact that the Dantzig et al. approach
might offer possibilities to push well beyond the expected limits of TSP
computation. This was reinforced shortly thereafter by theoretical studies
by Martin Grétschel and Manfred Padberg, who laid foundations for a great
expansion of the basic methodology. This pair of mathematicians went

11
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Figure 1.6
A new TSP record, 3,038 cities.
Discover, January 1993.

on to dominate the TSP scene for the next fifteen years. Their successes
began with Grotschel’s construction of an optimal 120-city tour through
Germany, published in his 1977 doctoral thesis. Padberg then teamed up
with IBM researcher Harlan Crowder, computing the optimal solution
for a 318-city example that arose in a circuit-board drilling application.
These two results, although great in their own right, turned out to be
only preliminary steps toward a series of startling announcements in 1987,
a banner year for the TSP. Working independently on opposite sides
of the Atlantic, Grotschel and Padberg led teams that solved in rapid
succession instances consisting of 532 cities in the United States, 666
locations in the world, and 1,002-city and 2,392-city drilling problems;
Grotschel worked with doctoral student Olaf Holland at the University of
Bonn, and Padberg worked with Italian mathematician Giovanni Rinaldi
at New York University.

Riding this wave of excitement, Vasek Chvatal and I decided to join the
TSP-computation race in early 1988. We were in the unenviable position
of trying to catch up to the fantastic efforts of Grotschel-Holland and
Padberg-Rinaldi, but we had the luxury of working alongside a broad and
active worldwide community delving ever deeper into the theoretical side
of the problem. Sifting through the growing body of research on the TSP
would provide powerful tools for use in a computational attack. Before
getting into the process, however, we made the single most important step
in the overall effort, recruiting to our team David Applegate and Robert
Bixby, two of the strongest computational mathematicians of our time.
Things started slowly and we had several false starts, but in 1992 we solved
arecord 3,038-city drilling problem, utilizing a large network of computers
working in parallel. With the pieces now in place, the team computed an
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Figure 1.7
Solution of an 85,900-city TSP arising
in a computer-chip application.
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Figure 1.8

Close-up view of a portion of the
85,900-city tour.

optimal 13,509-city tour through the United States in 1998, an optimal
24,978-city tour of Sweden in 2004, and, finally, an optimal tour for an
85,900-city applied instance in 2006. The computer code used in these
solutions is called Concorde and it is available over the internet.

The 85,900 cities in the record problem represent locations of connec-
tions that must be cut by a laser to create a customized computer chip. The
TSP in this case models the movement of the laser from location to location.
Although movements are measured in fractions of an inch, the total travel
time was a major contributor to the chip’s production cost. The optimal
route for the laser is illustrated in figure 1.7, with a close-up view of a small
region in figure 1.8.
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Grotschel’s 120-city Tour

Figure 1.9
Three tours of Germany.

The World TSP

The grid-like distribution of points evident in the 85,900-city example,
and in some of the drilling problems, does not really capture the traveling
spirit of the 48-states tour that started the long TSP research program.
But it is easy to appreciate the increased complexity of modern solutions
by examining the three tours through Germany illustrated in figure 1.9.
The small 33-city Commis tour was described in an 1832 book on tips
for salesmen; the blue tour is Grotschel’s 120-city record; and the tour in
the background is an optimal route through 15,112 cities, computed with
Concorde in 2001.
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The 15,112-city route may be the final tour of Germany, but for an
ultimate traveling challenge we put together a 1,904,711-city problem
consisting of every city, town, and village in the world, including several
research bases in Antarctica. Since 2001, this problem has withstood attacks
by Concorde and by computer codes from around the globe. If the million-
dollar Clay Prize is not to your taste, perhaps you would like to take on
this World TSP Challenge. At the time of publication of this book, the best-
known tour for the problem was produced by Danish computer scientist
Keld Helsgaun. His tour of length 7,515,790,345 meters was found on
October 10, 2010. This is almost certainly not the best-possible result, but
we do know that no tour can be of length less than 7,512,218,268 meters, a
bound computed with the Concorde code. Thus Helsgaun’s tour is no more
than 0.0476% longer than an optimal tour. That is close, but there is plenty
of room for shortcuts.

Drawing the Mona Lisa

An optimal tour for the World TSP would be fantastic, but we are very
likely more than a decade away from having the tools needed to make
a serious attempt at its solution. Fortunately, there is no shortage of
interesting problems to tackle along the way to conquering the world. A
pretty example is the 100,000-city Mona Lisa TSP displayed in figure 1.10.

Figure 1.10
Leonardo da

Vinci's Mona Lisa

as a TSP. Tour found
by Yuichi Nagata.
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This data set was developed in February 2009 by Robert Bosch, to create
a continuous-line drawing of da Vinci’s famous portrait. The current
best Mona Lisa tour was found by Yuichi Nagata of the Japan Advanced
Institute of Science and Technology. His tour is known to be at most
0.003% longer than an optimal solution. This is tantalizingly close, but we
are not yet home. As an incentive to anyone who might want to weigh in
on this problem, there is a $1,000 prize offered to the first person who can
improve on Nagata’s tour. A nice trophy, but keep in mind that the real
goal of problem-by-problem challenges is to gather ideas for use in general
solution methods for the salesman, and beyond to application areas well
outside the TSP. New avenues of attack are the name of the game.

Road Map of the Book

The T-shirt displayed in figure 1.11, with artwork by Jessie Brainerd, a
2007 Budapest Semester in Mathematics student, would be interpreted
immediately as the TSP by every recent graduate of applied mathematics
or computer science who is worth his or her salt.!* Study of the salesman is
a rite of passage in many university programs, and short descriptions have
even worked their way into recent texts for middle school students.

With the existing wide coverage of the problem, what am I trying to
accomplish with this book? The answer is simple: I plan to take the reader
on a path that goes well beyond basic familiarity of the TSP, moving right
up to current theory and state-of-the-art solution machinery. The ultimate
goal is to encourage readers to take up their own pursuit of the salesman,
with the hope that a knockout blow will come from an as yet unknown
corner.

Figure 1.11

The TSP on Halloween 2007.
Photograph courtesy of Jessie
Brainerd.
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We begin in chapter 2 by examining the roots of the salesman problem
from both the mathematical and applied perspectives; the presentation of
TSP history allows us to introduce basic themes picked up in later chapters.
This is followed, in chapter 3, by a selection of the many applications of
the TSP, including trip planning, genome sequencing, planet finding, and
music arranging.

The heart of our technical treatment of the problem is the material
presented in chapters 4 through 7, followed by a discussion of how TSP
computer codes stack up to the task of solving large examples in chapter 8.

The $1,000,000 theoretical issue of a polynomial-time general method
for the TSP is presented in chapter 9. If cold cash is what you desire, this
is the chapter for you. I do not, however, reccommend jumping ahead, even
if your bank account is in desperate need of deposits. Indeed, the seeds of
a successful theoretical attack may well be in methods that have proved
themselves in the computational field of play. And if you are going for
an impossibility result, you will need to handle the successful practical
techniques in your proof.

Moving away from direct mathematics, in chapter 10 we cover studies
on how humans, unaided by computers, go about solving the TSP; this area
brings the problem into the realm of psychologists and neuroscientists. In
chapter 11 we turn to the adoption of TSP tours in works of art, from the
beautiful abstract paintings of Julian Lethbridge to the Jordan curves of
Robert Bosch. Finally, chapter 12 wraps things up with a call for readers
to take up the TSP challenge.

Figure 1.12
Left: W. Cook, far left, and V. Chvatal, far right, presenting author J. P. Donleavy a chamber pot, 1987.
Photograph by Adrian Bondy. All rights reserved. Right: Postcard from J. P. Donleavy, 1987.
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Bashing on Regardless

A bit of advice. When faced with an overwhelming number of slings and
arrows, Irish writer J. P. Donleavy’s character Rashers Ronald would vow
to “Bash on regardless.”’® This became the rallying cry of the computational
study of the TSP by Applegate et al. I recommend the reader, too, adopt this
attitude when approaching the problem. We will cover work of numerous
experts who have made huge advances, but the TSP remains essentially
open. A new point of view could be just what is needed to dramatically
alter our ability to tackle the salesman.



2. Onigins.of the Problem

It appears to have been discussed informally by mathematicians at
mathematics meetings for many yeatrs.

—George Dantzig, Ray Fulkerson, and Selmer Johnson, 1954

he traveling salesman problem is known far and wide, but the path it

has taken to such mathematical prominence is somewhat obscure. For
example, we cannot say for certain when the problem’s lively name first
came into use. Nevertheless, most of the story can be told, albeit with
the help of an educated guess here and there. Its telling serves the useful
side purpose of getting our TSP feet wet before jumping in with details of
current attempts to crack the notorious problem.

Before the Mathematicians

As a practical matter, the TSP was tackled by humans long before it
became a fashionable topic of study in mathematics. Our cave-dwelling
elders no doubt solved small versions while out hunting and gathering,
but likely without the aid of much in the way of long-term planning. In
recent centuries, however, members of certain professions clearly did take
advantage of carefully planned routes. An examination of their tours is a
good place to begin our discussion.

Salesmen

Foremost among the route planers is the namesake of the TSP. Consider
the list of cities given in the sheet displayed in figure 2.1. This item is
part of the correspondence of salesman H. M. Cleveland in the year 1925.2
Mr. Cleveland worked for the Page Seed Company, gathering orders for
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Figure 2.1

Page Seed Company salesman
list for Maine, 1925. One of five
sheets.
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corn and other products. His list of cities is one of five sheets outlining a
tour of Maine. The full trip ran from July 9 through August 24, covering an
amazing 350 stops.

Two observations make it clear that Mr. Cleveland and the Page Seed
Company were interested in minimizing time spent on the road. First, the
drawing of the tour, displayed in figure 2.2, reveals a remarkable efficiency
in the itinerary; the portions where the tour appears to backtrack are all
due to the available road network, where one town can only be reached by
traveling to and from another town. Second, examine the following letter
from Mr. Cleveland to his employer.

July 15, 1925
Dear Sirs

My route list is balled up the worst I ever saw. Will take half
as long again to work it as last year. I have changed it some
beginning with Stockton Springs, Frankfort, Winterport, Hampden
Highlands, Bangor, Stillwater, Orono, Oldtown, Millford, Bradley,
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Brewer, So Brewer, Orrington, So Orrington, Bucksport, then to
original at Orland.

I wish you would send me my old list 1924 from Dexter on as it is
much better than this. I don’t see how you could break it out as you
did especially from Albion to Madison would be jumping all over
the map. This section I changed.

The river from Bangor down has no bridge and you have those
towns down as if I could cross it anywhere. Last season’s list was
made out the best of any one and I can’t see the object of changing
it over. I think I have made myself plain.

—Yours truly, H. M. Cleveland

Mr. Cleveland was most unhappy with part of the tour and went ahead with
his own improvements in its design.

Maine was just one of the destinations of Mr. Cleveland in 1925. He also
traveled through Connecticut, Massachusetts, New York, and Vermont,
making over 1,000 stops in total. And he was far from being the only

Figure 2.2

Page Seed Company salesman
tour of Maine, 1925. The tour
starts at Kittery and ends at
nearby Springvale, both in the
south of the state.
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person making the rounds. Timothy Spears’s book 100 Years on the Road:
The Traveling Salesman in American Culture cites an 1883 estimate by
Commercial Travelers Magazine of 200,000 traveling salesmen working in
the United States, and a further estimate of 350,000 by the turn of the
century. This number continued to grow through the early 1900s, and in
Mr. Cleveland’s day the salesman was a familiar site in most American
towns and villages.

Spears describes how these salesmen used aids such as L. P. Brockett’s
Commercial Traveller’s Guide Book to map out routes through their re-
gions. Often, however, tours were planned in a central office, such as was
done in the Page Seed Company. The images in figure 2.3 indicate one way
such tours were optimized, using pins and strings to plot potential routes
on a map.

An important reference in this discussion is the 1832 German hand-
book Der Handlungsreisende—Von einem alten Commis-Voyageur.®> The
Commis-Voyageur describes the need for good tours.*

Business leads the traveling salesman here and there, and there is
not a good tour for all occurring cases; but through an expedient
choice and division of the tour so much time can be won that we
feel compelled to give guidelines about this. Everyone should use as
much of the advice as he thinks useful for his application. We believe
we can ensure as much that it will not be possible to plan the tours
through Germany in consideration of the distances and the traveling

Figure 2.3
Rand McNally map cabinet and pin map. Secretarial
Studies, 1922.

5 ALESMEN BY PINS AND CORUS
Ceurtesy of Rand-MeNally Cowrtery o “Ramd MeNaliy

MAP CABINET
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back and forth, which deserves the traveler’s special attention, with
more economy. The main thing to remember is always to visit as
many localities as possible without having to touch them twice.

This is an explicit description of the TSP, made by a traveling salesman
himself!

The Commis-Voyageur book presents five routes through regions of
Germany and Switzerland. Four of these routes include return visits to an
earlier city that serves as a base for that part of the trip. The fifth route,
however, is indeed a traveling salesman tour, indicated in figure 2.5. (The
position of the route within Germany can be seen in the three-tours map
displayed in figure 1.9.) As the Commis-Voyageur suggests, the tour is very
good, perhaps even optimal, given road conditions at the time.

Numerous volumes written later in the century describe well-chosen
routes in the United States, Britain, and other countries. The romantic
image of the traveling salesman is captured, too, in stage, film, literature,

Dresden
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Figure 2.6

Commercial Traveller, McLoughlin Brothers,
1890. Courtesy of Pamela Walker Laird.

and song. The following is a typical turn-of-the-century salesman poem,
taken from a compilation published in 1892.”

Those who think a Drummer’s life

Is free from hardship, toil and strife,

Are mistaken, for he has to go

Through mud and rain, through sleet and snow.
He sallies forth, gripsack in hand

To seek for custom through the land.

The struggling drummer and his route-finding task were even featured in
a board game, Commercial Traveller, created by McLoughlin Brothers in
1890, that asked players to build their own tours through a rail system. The
choice of the salesman as the representative for the TSP is definitely well
founded.

Lawyers

The salesman may have top billing, but other groups also traveled the
land. The Oxford English Dictionary cites examples of the use of the word
“circuit” as far back as the fifteenth century, concerning judicial districts
in the United Kingdom. Traveling judges and lawyers served their districts
by riding a circuit of the towns and villages, where court was held during
specified times of the year. This practice was later adopted in the United
States, where regional courts are still referred to as circuit courts, even
though judges no longer take to the road.
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Easily the best-known circuit rider in the history of the United States
is the young Abraham Lincoln, who practiced law before becoming the
country’s sixteenth president. Lincoln worked the Eighth Judicial Circuit
in the state of Illinois, covering fourteen county courthouses. His travel is
described by Guy Fraker in the following passage.®

Each spring and fall, court was held in consecutive weeks in each
of the 14 counties, a week or less in each. The exception was
Springfield, the state capital and the seat of Sangamon County. The
fall term opened there for a period of two weeks. Then the lawyers
traveled the fifty-five miles to Pekin, which replaced Tremont as
the Tazewell County seat in 1850. After a week, they traveled the
thirty-five miles to Metamora, where they spent three days. The next
stop, thirty miles to the southeast, was Bloomington, the second-
largest town in the circuit. Because of its size, it would generate more
business, so they would probably stay there several days longer.
From there they would travel to Mt. Pulaski, seat of Logan County,
a distance of thirty-five miles; it had replaced Postville as county
seat in 1848 and would soon lose out to the new city of Lincoln,
to be named for one of the men in this entourage. The travelers
would then continue to another county and then another and
another until they had completed the entire circuit, taking a total
of eleven weeks and traveling a distance of more than four hundred
miles.

Fraker writes that Lincoln was one of the few court officials who regularly
rode the entire circuit. A drawing of the route used by Lincoln and
company in 1850 is given in figure 2.7. The tour is not quite the shortest
possible (at least as the crow flies), but it is clear that it was constructed
with an eye toward minimizing the travel of court personnel.

Preachers

The word circuit may have originated with the travel of judges and lawyers,
but as a group they are rivaled in fame by the circuit-riding Christian
preachers of the eighteenth and nineteenth centuries. John Hampson wrote
the following passage in his 1791 biography of John Wesley, the founder
of the Methodist church. “Every part of Britain and America is divided
into regular portions, called circuits; and each circuit, containing twenty
or thirty places, is supplied by a certain number of travelling preachers,
from two to three or four, who go around it in a month or six weeks.”” The
conditions under which these men traveled is folklore in Britain, Canada,

25
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Figure 2.7

Eighth Judicial
Circuit traveled by
Lincoln in 1850.

and the United States. A feeling for the extent of their tours can be gathered
from the following quotes.

I travelled about five thousand miles, preached about five hundred
sermons, visited most of the circuits in Virginia and North Carolina.

—Freeborn Garrettson, 1781.8

Our circuit at that time, was five hundred miles around it, and for
me to preach as I did sixty-three sermons in four weeks, and travel
five hundred miles, was too hard. But I cried unto the Lord and he
heard me; for as my day was, so was my strength.

—Billy Hibbard, 1825.°

I have not been able to obtain detailed itineraries of any of the longer
circuits traveled by these Methodist preachers, but it is safe to assume that
some planning went into the selection of the routes. A goal of their work
was to reach as many church members as possible, so minimizing time on
the trail would have been an important consideration.
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Euler and Hamilton

Back in the realm of mathematics, the plight of salesmen, lawyers, and
preachers did not capture the attention of busy researchers, who had their
hands full, laying down fundamentals for the rapidly expanding fields of
the physical sciences. Two of the leading figures of the era did, however,
explore aspects of the TSP, and they are rightly viewed as the grandfathers
of traveling-salesman research.

Graph Theory and the Bridges of Kénigsberg

The great Leonhard Euler wrote the most important of all early mathemati-
cal papers describing touring problems. The Euler Archive cites an estimate
by historian Clifford Truesdell that “in a listing of all of the mathematics,
physics, mechanics, astronomy, and navigation work produced during the
18th Century, a full 25% would have been written by Leonhard Euler.”
History’s most prolific mathematician studied a vast array of topics, includ-
ing a puzzle that was a longstanding challenge to the residents of the town
of Konigsberg in East Prussia.

A satellite image of Konigsberg, now called Kaliningrad, reveals the
elaborate waterway formed by the River Pregel. The rectangular island
created by the splitting of the river is called the Kneiphof; the large
island to the east of the Kneiphof is called Lomse; the region north
of the river is the Altstadt; and the region south of the river is the
Vorstadt.!

In Euler’s day, the Pregel was crossed by seven walkways: the Green
and Kottel bridges joined the Kneiphof to the Altstadt, the Krdmer and

Figure 2.8
Konigsberg and the River
Pregel, TerraServer.com, 2011.
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Figure 2.9

Euler’s drawing of
the Kénigsberg
bridges.

Schmiede bridges joined the Kneiphof to the Vorstadt, the Honey bridge
joined the Kneiphof and the Lomse, the High bridge joined the Lomse and
the Altstadt, and the Wood bridge joined the Lomse and the Vorstadt. The
good citizens of Konigsberg enjoyed strolls through their town, crisscross-
ing the Pregel via the Green, Koéttel, Kramer, Schmiede, Honey, Lomse,
and Wood. The tale is that the Konigsbergers had a standing challenge of
crossing each of the seven bridges exactly once on a single walk through the
town.

Euler weighed in on the Konigsberg problem with a paper presented
to the Academy of Sciences in Saint Petersburg on August 26, 1735.!
His treatment follows a classic mathematical line of abstracting just the
necessary information to capture the essence of the problem, and in so
doing he laid the foundation for an important new branch of mathematics
known as graph theory.'?

To begin, Euler removed the physical nature of the challenge, sketching
the town, river, and bridges, as displayed in figure 2.9. (This is a cleaned-up
version of a computer scan taken from a copy of Euler’s original published
paper.) Euler labeled the regions of Konigsberg as A, B, C, and D, and the
seven bridges as a through g. These labels are enough to describe any route
through the town, such as A to C via the ¢ bridge, C to D via the g bridge,
D to B via the f bridge, and B to A via the b bridge. A shorthand for
this route would be AcCgDf BbA. Euler’s arguments are based entirely
on manipulating the routes as strings of symbols, rather than as walkers
crossing the town.

The size of the land regions does not play a role in Euler’s work, so the
arguments can be visualized by a simple diagram, where A, B, C,and D are
drawn as points, and a through g are drawn as lines joining pairs of these
points, as in figure 2.10. The interpretation of the drawing is not influenced
by the shape or length of the points and lines, but only by which pairs of
points are joined. An object such as this is called a graph. The points of the
graph are called vertices, the lines are called edges, and each edge has as its
ends two of the vertices.
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Figure 2.10
Graph representation of the
Koénigsberg bridges.

In this stripped-down setting, a walk through Konigsberg trans-
lates to movement from vertex to vertex in the graph, traveling along
the graph’s edges. A possible walk, starting at B and ending at D, is
BaAcCgDeAbBf D. In this walk, three edges meet vertex B, namely a,
b, and f; four edges meet vertex A, namely a, ¢, e, and b; two edges meet
vertex C, namely ¢ and g; and three edges meet vertex D, namely g, e, and
f. The key observation of Euler is that the odd-even-even-odd pattern to
these numbers is no accident: in any walk between two distinct points, the
starting and ending vertices meet an odd number of edges and all other
vertices meet an even number of edges. Furthermore, if we have a closed
walk, that is, we start and end at the same point, then every vertex meets an
even number of edges. So we have either all “even” vertices or exactly two
“odd” vertices.

This is bad news for the Kénigsbergers. All four vertices of their bridge
graph meet an odd number of edges, thus there can be no walk using each
edge exactly once. Euler’s short argument put an end to the Konigsberg
debate.

The Knight's Tour

Several years after settling the Konigsberg puzzle, Euler wrote on a second
touring challenge, known as the knight’s tour problem in chess.”> The
task here is to find a sequence of knight’s moves that take the piece from
a starting square on a chessboard, through every other square exactly
once, and then back to the starting square. Euler’s solution is depicted
in figure 2.11, where the order of moves is indicated by numbers on the
squares.

The idea of a traveling knight appealed to Euler, who also laid out
routes for boards of nonstandard size. These problems can be framed nicely
using the language of graphs. In this case, we have a vertex for each square
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Figure 2.11
63 54 11 30 25 28 19 38

Euler’s solution to the
knight's tour problem. 32 13 62 27 60 23 48 5
53 64 31 24 29 26 37 18
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on the board, with two vertices joined by an edge if a knight can travel
between the squares in a single move. A knight’s tour is a closed walk that
visits each vertex exactly once. (Note the similarity with the Kénigsberg
problem, where we sought a walk traversing each edge exactly once.) The
particular graph for the full chessboard is displayed in figure 2.12, together
with Euler’s route for the knight.

The Icosian

Ireland’s Sir William Rowan Hamilton was also drawn to a question in-
volving tours in a particular graph. A century after Euler, Hamilton studied
ways to visit all twenty corner points of the dodecahedron, the twelve-
sided Platonic solid. Hamilton made use of an abstract drawing he dubbed
the Icosian, displayed in figure 2.13. The lines of the Icosian represent the
dodecahedron’s geometric edges and the circles represent its corners.
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Figure 2.13
The Icosian.

Figure 2.14

W. R. Hamilton commemorative
stamp, Irish An Post, 2005.

rvan Flanidtsn Portrait of Hamilton courtesy of
the Royal Irish Academy.

The Icosian is a graph, and Hamilton’s tours also proceed from vertex
to vertex, always traveling along the graph’s edges. Interestingly, Hamilton
used an algebraic system to view this travel, in an approach similar in spirit
to his defining equations for quaternions. He describes this in a formal
letter to his friend John T. Graves in 1856.1

As in the little paper which I lately sent you, let me continue to
assume three symbols, i, x, 4, which shall satisfy the four following
equations:

=1, k=1, =1, L=ix.

What I have first to show, by one or two examples, is that the
symbols so defined have curious but determinate properties, making
them the legitimate instrument of a calculus: every symbolic result
of which, so far as I can judge, and I have examined a great number
of them, admits of easy and often interesting interpretation, with
reference to the passage from face to face, or from corner to corner,
of one or other of the solids considered in the ancient geometry.

The three symbols correspond to operations in the Icosian; when symbols
are multiplied, the operations are made one after the other.!®> Through his
calculus on these symbols, Hamilton showed that no matter what path
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Figure 2.15
Left: The Icosian Game. Right: The Traveller's Dodecahedron.

(©) 2009 Hordern-Dalgety Collection, puzzlemuseum.com.

of five vertices is chosen as a start, it is always possible to complete a
tour through the remaining vertices of the Icosian. Fascinated with this
structure, Hamilton concluded his letter to Graves with a description of
a game to be played on the Icosian graph.

I have found that some young persons have been much amused
by trying a new mathematical game which the Icosian furnishes,
one person sticking five pins in any five consecutive points, such
as abcde, or abcde’, and the other player then aiming to insert,
which by the theory in this letter can always be done, fifteen other
pins, in cyclical succession, so as to cover all the other points, and
to end in immediate proximity to the pin wherewith his antagonist
had begun.

Two versions of the game were later marketed by a British toy merchant.
One variant, called the Icosian Game, consists of a wooden board with
ivory pegs to mark visited points. The second variant, called the Traveller’s
Dodecahedron: A Voyage Round the World, is a handheld device, shaped
as a partially flattened dodecahedron, with pegs for the points and a string
to trace out the tour.'®

Despite Hamilton’s enthusiasm, the games were a flop in the com-
mercial market. If you try a few rounds of play you will see quickly the
problem: finding tours in the Icosian graph is too easy. Hamilton was quite
defensive about this point, stating that the puzzles were not at all easy for
him. This odd status, where the game is simple for children but challenging
for Ireland’s greatest mathematician, may have been due to Hamilton’s
algebraic view of things. Perhaps Hamilton was solving the puzzles through
mental manipulation of i, x, and 4, rather than tracing the tours visually.
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Figure 2.16

Worried Woodworm.

(© 2009 Hordern-Dalgety
Collection,
puzzlemuseum.com.

On a happier note, a twentieth-century variant of Hamilton’s game did
manage to bring in a significant number of sales. James Dalgety’s Worried
Woodworm puzzle, from 1975, asks for walks in a particular graph, but in
this case the routes are tricky to spot. Dalgety’s wooden board is displayed
in figure 2.16. The main goal is to discover a path starting in the bottom
left, ending at the top right, and visiting every hole along the way.

The Concorde code was used recently to settle additional Worried
Woodworm challenges posed by Dalgety, but fair-minded players would,
no doubt, frown on employing a state-of-the-art TSP solver and a high-
powered computer to plot the worm’s path through the twenty-three
points.

Hamiltonian circuits

Euler’s knights and Hamilton’s game-playing children both search for tours
in graphs, but what about a general question? Not all graphs possess a tour
through their vertices and a challenge is to decide which do and which
do not. Hamilton’s fame added considerable luster to this challenge at a
time when graph theory was just beginning to find its place within the
mathematical world. This explains why his name gets top billing when
describing the problem. But do not jump in alarm at the snub of Euler.
Graph theorists reserve Euler’s name for closed walks that model the
sought-after trip through Konigsberg. Thus, a Hamiltonian circuit in a
graph is a closed walk that visits each vertex exactly once, while a Eulerian
walk is a closed walk that travels along each edge exactly once. Both walks
are fundamental concepts in graph theory, but there is a world of difference
between the two, despite the obvious similarities.

Deciding whether or not a graph has a Hamiltonian circuit is an N/ P-
complete problem, capturing much of the complexity of the general TSP.
On the other hand, there is a simple rule for determining if a graph has an
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Figure 2.17
Coloring a map via a
Hamiltonian circuit.

Eulerian walk, namely, except for vertices meeting no edges at all, the graph
must be connected, that is, it consists of a single piece, and each vertex must
be the end of an even number of edges.

So we understand Euler, but not Hamilton. Indeed, year after year,
brave mathematicians have suggested conditions guaranteeing Hamil-
tonian circuits, only to see their conjectures fail. A famous example is due
to P. G. Tait in the 1880s. Tait was caught up in the excitement of Alfred
Kempe’s announced proof of the four-color theorem. This result states that
the regions (countries) of any map can be colored with at most four colors
in such a way that any two regions sharing a border receive different colors.
Looking for an alternative proof that four colors suffice, Tait conjectured
that a certain type of graph always has a Hamiltonian circuit.

To see the connection between traveling and map coloring, think of the
boundaries of a map’s regions as the edges of a graph, with the intersection
points as vertices. A Hamiltonian circuit through this boundary graph gives
a way to color the map, as illustrated in figure 2.17, where the red edges
form a Hamiltonian circuit. Such a circuit does not cross itself, so it has
an inside and an outside. Moreover, the border edges on the inside, that
are not part of the circuit, cut across the inner area. We can thus color
these inner regions with two colors, switching every time we cross one of
the non-circuit edges. The same trick allows us to two-color the regions
lying outside of the Hamiltonian circuit, yielding altogether a four-coloring
of the map. In the example, the inner regions are colored dark yellow
and light yellow, and the outer regions are colored dark blue and light
blue.

Tait knew that not all maps have Hamiltonian circuits through their
borders (the map of the continental United States is a ready example),
but available tricks allowed the four-color problem to be restricted to
maps such that each vertex of the border graph meets exactly three edges.
Furthermore, the border graph could be assumed to be three-connected,
that is, it is impossible to break the graph into two parts by deleting one or
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two vertices. Restricted to these three-regular, three-connected maps, Tait
expected Hamiltonian circuits would always be available.

William Tutte, the great graph theorist and Bletchley Park code breaker,
eventually showed Tait’s conjecture to be false in 1946. That is too bad, but
at least the circuit problem stood its ground longer than Kempe’s four-color
proof, which was shown to be incorrect by P. J. Heawood in 1890.

A historical footnote is that the first recorded description of the four-
color problem is in a letter to Hamilton, written by Augustus De Morgan
in 1852. Hamilton was not impressed with the problem, replying, “I am not
likely to attempt your ‘quaternion of colours’ very soon.””

Mathematical Genealogy

Mathematicians enjoy tracing their academic heritage, following their
Ph.D. thesis adviser to their adviser’s adviser, and so on back through time.
The Mathematics Genealogy Project Web site run by North Dakota State
University contains over 130,000 records of Ph.D. advisers, with a goal to
compile information on all the world’s mathematicians. I am proud to trace
my own roots back to Victorian-era mathematician Arthur Cayley, with an
informal leap over to Sir Hamilton himself.

The path to Cayley is direct: W. Cook to U.S.R. Murty to C. R.
Rao to Ronald Fisher to James Jeans to Edmund Whittaker to Andrew
Forsyth to Arthur Cayley. The formal path stops here, since Cayley was
trained in the law and did not obtain a Ph.D. degree. Cayley had great
interest in mathematics, however, and in 1848 he traveled to Dublin to
attend Hamilton’s lectures on quaternions at Trinity College. Influenced
by Hamilton, Cayley went on to write several hundred mathematical papers
while practicing law, leading up to his appointment to the Sadleirian chair
of mathematics at Cambridge in 1863. Cayley did not pick up Hamilton’s
interest in TSP-related problems, but he is a well-known figure in graph
theory, introducing the notion of “trees” that we cover later in the book.

Vienna to Harvard to Princeton

Euler and Hamilton studied tours, but chessboards and dodecahedrons are
a far cry from a salesman out on the road. A salesman is not satisfied with
any old tour, she wants one of shortest possible length.

To bring in travel costs, we must jump ahead another century to Karl
Menger and his work in Vienna. One of Menger’s favorite topics in the
1920s was the study of techniques to measure lengths of curves in space.
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This esoteric research likely provided inspiration for his announcement of
a close relative of the TSP, made at a colloquium held on February 5, 1930.18

We use the term Messenger problem (because this question is faced
in practice by every postman, and, by the way, also by many
travelers) for the task, given a finite number of points with known
pairwise distances, to find the shortest path connecting the points.

The problem is to find a path through the points, without a return trip to
the start. This is easily converted to the TSP by adding an extra “dummy”
city that serves to link the ends of the path. The cost of travel between the
dummy and each of the real cities can be set to zero, so that visiting the
extra city will not influence the choice of the path’s starting point or ending
point.

Menger’s “messenger problem” is recorded, in German, as part of the
published documentation of the Vienna Mathematics Colloquium. The
announcement is of clear historical importance, but it does not appear to
have been the direct source of interest in the TSP among researchers in
the United States. This honor goes to a lecture presented by prominent
Harvard mathematician Hassler Whitney, cited in the following passage
from Dantzig, Fulkerson, and Johnson’s classic paper."’

Merrill Flood (Columbia University) should be credited with stimu-
lating interest in the traveling-salesman problem in many quarters.
As early as 1937, he tried to obtain near optimal solutions in
reference to routing of school buses. Both Flood and A. W. Tucker
(Princeton University) recall that they heard the problem first in
a seminar talk by Hassler Whitney at Princeton in 1934 (although
Whitney, recently queried, does not seem to recall the problem).

Merrill Flood himself also credits Whitney’s lecture when describing the
history of the TSP in a 1956 research paper. “The problem was posed, in
1934, by Hassler Whitney in a seminar talk at Princeton University.”*
Even well after the fact, Flood refers to the TSP as the “48-states problem of
Hassler Whitney” in an interview with Albert Tucker in 1984.%!

It is natural to speculate on a possible connection between Menger’s
Vienna colloquium and Whitney’s Princeton seminar. Support for such
a connection was found by Alexander Schrijver, who notes that Menger
and Whitney met at Harvard University in 1930-31, during a semester-
long visit by Menger.?* It is unclear, however, if the two actually exchanged
information directly related to the salesman/messenger problem.

It also remains a question whether Whitney did in fact discuss the
TSP at Princeton. There unfortunately is not an accessible record at



Origins of the Problem

Figure 2.18
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Princeton University covering the seminars delivered in the Department
of Mathematics in the 1930s. The Pusey Library at Harvard University
does, however, contain an archive of 3.9 cubic feet of Whitney’s papers,
and within the archive there is a set of handwritten notes that appear to
be preparation for a seminar by Whitney, written sometime in the years
shortly after 1930. The notes present an introduction to graph theory,
including the following paragraph.

A similar, but much more difficult problem is the following. Can we
trace a simple closed curve in a graph through each vertex exactly
once? This corresponds to the following problem. Given a set of
countries, is it possible to travel through them in such a way that
at the end of the trip we have visited each country exactly once?

In Whitney’s problem, a graph is formed by placing a single vertex in each
country, and joining two vertices by an edge if the countries share a border.
A trip through the countries is a Hamiltonian circuit in the graph. This is an
unusual choice as an example to describe the Hamiltonian-circuit problem
and it is clearly not a far step from the TSP.

The geographic aspect of this example matches Flood’s recollection
of the “48-states problem.” Indeed, Whitney’s illustration of Hamiltonian
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circuits may well be the starting point of TSP research in the United States.
In the words of Alan Hoffman and Philip Wolfe, Whitney served “possibly
as a messenger from Menger” in bringing the salesman to the mathematics
community.?

And on to the RAND Corporation

There is not a record of the study of the salesman problem, under the TSP
name, in the late 1930s and into the 1940s, but by the end of the 1940s
it had become a known challenge. At this point the center of TSP action
had moved from Princeton to RAND, coinciding with Flood’s relocation
to California.

Princeton University’s Harold Kuhn writes the following in a December
2008 e-mail letter.

The traveling salesman problem was known by name around Fine
Hall by 1949. For instance, it was one of a number of problems for
which the RAND corporation offered a money prize. I believe that
the list was posted on a bulletin board in Fine Hall in the academic
year 1948-49.

The RAND prize list! The TSP literature is peppered with mention of
these prizes, but it is no longer easy to track down a copy of the original
RAND document. Hoffman and Wolfe describe the RAND prize as one
“for a significant theorem bearing on the TSP.” The list, together with the
great reputation of the RAND research group, played an important role in
spreading the news of the TSP, although the prize itself was never awarded.

Within RAND, a prize is mentioned by famed mathematician Julia
Robinson, in remarks concerning her research into the theory of games.
“And RAND was offering a $200 prize for its solution. In my paper, ‘An
iterative method of solving a game,” I showed that the procedure did indeed
converge, but I didn’t get the prize, because I was a RAND employee.”**
Likely inspired by another problem on the list, Robinson took up the study
of the TSP in 1949. Her work on the salesman is in tune with a general
approach to mathematics she describes in handwritten notes from this
period. “I prefer working on problems whose statement is comparatively
simple but where nothing is known about what sort of methods might
lead to a solution, to working on those requiring extensions of existing
methods.”” The TSP certainly fit the bill—no progress on the problem
was reported in the nearly twenty years since Menger’s colloquium. As
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we will see in chapter 5, her contributions to the salesman provided the
background for the RAND breakthrough several years later.

Whence the TSP?

In a 1949 research paper, Robinson uses “traveling salesman problem” in an
ofthand way, suggesting it was a familiar concept at the time. In fact, until
a copy of the RAND prize list is uncovered from its likely hiding place in
some archive or other, Robinson’s report is the earliest known reference to
the TSP by name. Robinson formulates the problem as finding “the shortest
route for a salesman starting from Washington, visiting all the state capitals
and then returning to Washington,” matching both Flood’s description and
the data set used by Dantzig et al.

Robinson’s language connects the TSP and the “48-states problem,” but
we do not know when and where the salesman name first came into play.
Merrill Flood would seem to be the person to have this information, but
unfortunately he does not, as he explained to Albert Tucker. “I don’t know
who coined the peppier name Traveling Salesman Problem for Whitney’s
problem, but that name certainly caught on, and the problem has turned
out to be of very fundamental importance.” Whatever the origin, except for
small variations in spelling and punctuation, “traveling” versus “travelling,”
“salesman” versus “salesman’s,” etc., by the mid-1950s the TSP name was
in wide use, and the problem was beginning to pick up its notorious
reputation. The table was set for Dantzig et al.

A Statistical View

Many important problems in mathematics are attacked from all sides,
sometimes without the attacking teams knowing others have joined the
fray. Such is the case with the salesman problem. At about the time Flood
and company were struggling with the TSP in the United States, on the
other side of the world, statistician P. C. Mahalanobis took on the problem
from a different mathematical point of view and with a far different
application in mind.

Bengali Jute Farms

Mahalanobis is known as the Father of Statistics in India, founding both the
Indian Statistical Institute and the Sankhya journal of statistics. One of his
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Figure 2.19

Prasanta Chandra
Mahalanobis. Photograph

on right taken while on a
farm sample survey. Courtesy
Mahalanobis Museum,
Indian Statistical Institute,
Kolkata, India.

main interests was the development of techniques for carrying out sample
surveys, and it is here he made a connection to the TSP.

A major source of revenue in India during the 1930s was obtained
from its jute crop, accounting for roughly one quarter of total exports. The
majority of India’s jute was grown in the Bengal region and an important
practical question was how to collect data to make accurate forecasts of the
crop.

A complete survey of Bengali land used in jute production was imprac-
tical, owing to the fact that jute was grown on roughly six million small
farms. Mahalanobis proposed instead to make a random sample survey,
dividing the country into zones comprising land of similar characteristics,
and within each zone selecting a random number of points to inspect for
jute cultivation. A major component in the cost of making the survey would
be the time spent in moving men and equipment from one sample area to
the next. This is the TSP aspect of the application, to find efficient routes
between the selected sites in the field. Concerning this, Mahalanobis writes
the following in a 1940 research paper.?°

It is also easy to see in a general way how the journey is likely
to behave. Let’s suppose that n sampling units are scattered at
random within any area; and let’s suppose that we may treat each
such sample as a geometrical point. We may also assume that
arrangements will usually be made to move from one sample point
to another in such a way as to keep the total distance travelled as
small as possible; that is, we may assume that the path traversed in
going from one sample point to another will follow a straight line.
In this case it is easy to see that the mathematical expectation of the
total length of the path travelled in moving from one sample point to
another will be (/n — 1/4/n). The cost of the journey from sample
to sample will therefore be roughly proportional to (/n —1/4/n).
When # is large, that is, when we consider a sufficiently large area,
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we may expect the time required for moving from sample to sample
will be roughly proportional to /i, where 7 is the total number of
samples in the given area.

The term expectation refers to the average length of the optimal tours
we would see if we repeated many times the experiment of taking »
random points and solving the TSP. Perhaps owing to his research interests
as a statistician, Mahalanobis does not discuss the operational task of
actually finding tours for specific data. He focuses instead on making
statistical estimates of the lengths of optimal routes. This is quite a different
angle on the problem than that taken up by researchers at Princeton and
RAND.

Mahalanobis’s estimates were included in the projected costs of carry-
ing out sample surveys in Bengal, and these projections were an important
consideration in the decision to implement a small test in 1937 and a large
survey in 1938.

Verifying the Tour Estimates

Mahalanobis did not give a precise analysis of his TSP formula, but his
research set up a nice target for further work by the statistics community.
The object of this work was to learn more about tours that arise when city
locations are chosen at random in a unit square, that is, each point (x, y)
with both x and y between 0 and 1 is equally likely to be chosen as a sample
location. In particular, what can be said about the lengths of optimal tours
through such point sets?

Researchers approached the problem from two directions. Eli Marks
showed, in 1948, that the expected length of an optimal tour through a
random set of points is at least

1

()

and M. N. Ghosh showed, in 1949, that the expected length is at most
1.27./n. For large n, these results combine to prove that Mahalanobis’s
intuition was correct; the expected length of the tour is indeed proportional
to \/n.

In his research paper on the upper bound, Ghosh made a point to
comment on the operational task of producing results for specific data.
“After locating the n random points in a map of the region, it is very difficult
to find out actually the shortest path connecting the points, unless the
number 7 is very small, which is seldom the case for a large-scale survey.”*
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It is interesting that he observed the heart of the TSP challenge of finding

optimal tours, apparently without connection to Menger, Whitney, and
Flood.

The TSP Constant

The Mahalanobis-Marks-Ghosh result gives an estimate for the average
tour length, but it does not say anything about the range of lengths we
are likely to see in a series of experiments: some random point sets might
have long optimal tours, while others could have tours that are quite short.
This in fact does not happen, if # is reasonably large. To understand this
point, examine the histogram given in figure 2.20, displaying the optimal
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tour lengths divided by /1, 000 for 10,000 random geometric instances,
each with 1,000 cities. The results form a nice bell curve around the mean
0.7313. With only 1,000 cities there is still some variance in the tour values,
but a famous theorem of Beardwood, Halton, and Hammersley, published
in 1959, implies that as n gets large, the distribution of tour lengths will
spike around a particular number called f3, the TSP constant.?®

An intriguing question is to determine the value of f. Its investigation
has led to an important subfield of probability, but proven estimates do not
come close to pinning it down. So we have a natural constant whose actual
value is unknown.

In an ongoing study of § with David Applegate, David Johnson, and
Neil Sloane, we have solved over 600,000,000 geometric instances of the
TSP. This has given Concorde quite a workout, but the mountain of
computation alone cannot prove any definitive results. Nonetheless, plots
such as the one displayed in figure 2.21 strongly suggest a steady decrease
in the average tour length divided by 4/n as n increases, pointing toward an
ultimate value of approximately 0.712 for .%°
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Because my mathematics has its origin in a real problem doesn’t
make it less interesting to me—just the other way around.

—George Dantzig, 1986.

he name itself announces the applied nature of the traveling salesman

problem. This has surely contributed to a focus on computational issues,
keeping the research topic well away from perils famously described in John
von Neumann’s essay “The Mathematician”. “In other words, at a great
distance from its empirical source, or after much ‘abstract’ inbreeding, a
mathematical subject is in danger of degeneration”. Indeed, a strength of
TSP research is the steady stream of practical applications that breathe new

life into the area.

Road Trips

In our roundup of TSP applications, let’s begin with a sample of tours taken
by humans, including the namesake of the problem.

Salesmen in the Digital Age

An automobile equipped with a global positioning system (GPS) device
is the mode of transportation typically chosen by local traveling
salesmen. Mapping software running on the GPS unit often includes a
TSP solver for small instances having a dozen or so cities, and this is
usually adequate for daily trips. Detailed maps stored in the unit can be
used to deliver accurate estimates of the time to travel from point to
point, allowing TSP solutions to reflect actual driving conditions faced by
travelers.
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Alain Kornhauser of Princeton University, an expert on the application
of mapping technology, described an interesting, reverse, use of GPS
equipment. When a user specifies a destination with a latitude and lon-
gitude, it is sometimes impossible to project the point onto the known grid
of roads and highways—there just isn’t a way to get to the location. But if
a package must be delivered, then a local trucker will often find a route,
perhaps using a small lane that is not on the grid. In such a case, the GPS
system reports back to a central server and a link is added into the grid,
tracing the path traveled by the vehicle. Next time a delivery is requested
for the location, the mapping software makes use of the newly inserted
road.

Pick-ups and Deliveries

A common use of small-scale TSP models is the routing of buses and vans
to pick up and deliver people and packages. Merrill Flood wrote that a
school bus-routing problem provided his initiation into the study of the
TSP. Another early team, George Morton and Ailsa Land of the London
School of Economics, was drawn to the problem by a laundry-van applica-
tion. In a more recent example, the firm Rapidis employed Concorde to plot
routes for their customer Forbruger-Kontakt, a distributor of advertising
material and samples, operating in Denmark and several other countries.
The image in figure 3.1 is a drawing made from a screen dump of the
routing software created by Rapidis. The route in the drawing obeys one-
way streets and other travel restrictions, making the cost to travel between
two points depend on the direction that is chosen.

Figure 3.1

TSP tour for deliveries by
Forbruger-Kontakt. Courtesy
of Thomas Isrealsen.
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Meals on Wheels

A team from Georgia Tech described a successful application of a fast TSP
heuristic algorithm for constructing the routes of aid workers in a “Meals
on Wheels” program in Atlanta.” Each driver in the program delivers meals
to 30 to 40 locations out of a total of 200 or so that are served daily. To
construct routes for the drivers, all 200 locations are placed in a tour that is
divided into segments of the appropriate lengths. The overall tour is found
with the aid of the spacefilling curve illustrated in figure 3.2. Ever-finer
versions of the curve will eventually include any point in the city, and the
heuristic tour through the 200 locations is obtained by taking the order in
which the locations appear on the curve.

The simplicity of the tour-finding method allowed the manager of
the program to easily update the tour by hand as new clients joined the
system and existing clients left the system. The process runs as follows.
The position of a point in the tour depends only on its relative position
on the spacefilling curve. The Georgia Tech team precomputed the value
of 0 for a fine grid of (x, y) locations from a standard map of Atlanta.
The list of active clients was stored on two sets of index cards, one sorted
alphabetically and the other stored in the tour order, that is, by increasing
value of 0. To delete a client, his two cards are simply removed. To insert

Figure 3.2

Spacefilling curve for
Atlanta region. Image

courtesy of John Bartholdi.
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a new client, the map is used to determine the (x, y) coordinates of the
client’s location, the table is used to look up the corresponding value of 0,
and 0 is used to insert the client’s card into the tour order. An ingenious,
low-tech solution for a practical TSP application.

Farms, Oil Platforms, and Blue-claw Crabs

The farming study of Mahalanobis in the 1930s is an early example of
the use of the TSP in planning inspections of remote sites. This type of
logistical application occurs in many other contexts as well. For example,
William Pulleyblank reports the use of TSP software to plan routes for
an oil firm to visit a set of 47 platforms off the coast of Nigeria. In this
instance, the platforms are visited via a helicopter flying from an onshore
base. In another example, a group at the University of Maryland modeled
the problem of scheduling boat-crew visits to approximately 200 stations
in the Chesapeake Bay. The purpose of the boat trips was to monitor the
blue-claw crab population in the bay; the researchers turned to the TSP
after having difficulty completing trips quickly enough to permit frequent
monitoring of all sites.

Book Tours

Manil Suri, the author of the novel The Death of Vishnu and a professor of
mathematics, made the following remark in SIAM News.?

The initial U.S. book tour, which starts January 24, 2001, will cover
13 cities in three weeks. When my publisher gave me the list of
cities, I realized something amazing. I was actually going to live the
Traveling Salesman Problem! I tried conveying my excitement to
the publicity department, tried explaining to them the mathematical
significance of all this, and how we could perhaps come up with
an optimal solution, etc., etc. They were quite uneasy about my
enthusiasm and assured me that they had lots of experience in
planning itineraries, and would get back to me if they required
mathematical assistance. So far, they haven’t.

Despite the reluctance of Suri’s publishers, book touring is a natural setting
for the TSP.
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Extra Miler Club

The motto of the Extra Miler Club is “because the shortest distance between
two points is no fun.” Nonetheless, members do like to plan their tours,
aiming to visit all 3,100+ counties in the United States. This is not exactly a
TSP, since crossing any point of a county line is sufficient, although some
members prefer to visit each county seat of government.

The Wall Street Journal reported that one Extra Miler proposed to eat
a Big Mac in each of the over 13,000 McDonald’s in North America.* That
would be a nice application of the TSP, but the club Web site reports the
member “has now set forth upon a less gastronomically challenging goal.”

The Iron Butt Rally

While the Extra Milers typically travel by automobile, the vehicle of choice
for the 35,000-member strong Iron Butt Association is the motorcycle. One
of their many challenges is the 48 States in 10 Days ride, where riders must
visit all 48 continental states in the United States. Any route through the
states is acceptable, but riders must obtain printed documentation, such as
a gasoline receipt, verifying each state on their trip. Rider Maura Gatensby
sent an e-mail letter in February 2009, asking about the city locations used
in the Dantzig-Fulkerson-Johnson TSP tour.

Most of us work on the problem by taking existing routes and trying
to trim them somehow, but after reading about the existence of
this problem in mathematics, I would like to make the Dantzig
route my base route, and then perhaps try and reduce distance by
moving some of the Dantzig locations. If the Dantzig route is not
too long, I would like to just ride this route, because of its historical
significance. Sometimes the shortest route isn’t the “best” route,
there is more poetry in walking in the footsteps of giants.

This is certainly a great use of their optimal solution.

Ms. Gatensby writes that the shortest distance known for the 48/10
ride is 6,967 miles. Although 48 cities is easy for today’s TSP solvers, the
problem is complicated by the fact that there are many choices for potential
stops in each state. It would be an interesting challenge to find the optimal
route with some fixed constraint, such as requiring each state visit to be
among a list of known gasoline stations.



The Salesman in Action 49

Figure 3.3

En route with the Miss Izzy.
Photograph courtesy

of Ron Schreck.

Flight Times

For record speed, it is hard to beat Ron Schreck, who uses the RV-8
airplane Miss Izzy for his tours. In 2007, Schreck had the idea to visit in
a single day all 109 public airports in his home state of North Carolina.
Concorde provided an optimal tour that Ron modified slightly to reach
before sunrise several airports having lighted runways. His trip was made
on July 4, a public holiday in the United States, which helped in avoiding
delays. Schreck’s total flight covered 1,991 miles in seventeen hours, with
the time between landings averaging only nine and a half minutes. Landing
here typically meant touching the wheels on the ground and bouncing back
into the air.

Mapping Genomes

Turning away from the movement of people and vehicles we find surprising
uses of the TSP model. One of the most interesting of these arises in
genetics research, where a focus over the past decade has been the accurate
placement of markers that serve as landmarks for genome maps.

A genome map has for each chromosome a sequence of markers
with estimates of the distances between adjacent markers. The markers in
these maps are segments of DNA that appear exactly once in the genome
and can be reliably detected in laboratory work. The ability to recognize
these unique segments allows researchers to use them to verify, compare,
and combine physical maps created across different laboratories. It is
particularly useful to have accurate information on the order in which the
markers appear on the genome, and this is where the TSP comes into play.
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One of the primary techniques for obtaining laboratory data on the
relative position of markers is known as radiation hybrid (RH) mapping.
This process exposes a genome to high levels of X-rays to break it into
fragments. The fragments are then combined with genetic material, taken
from rodents, to form hybrid cell lines that can be analyzed for the presence
of markers. A simple illustration of the two steps is given in figure 3.4.

The central theme in RH mapping is that positional information can
be gleaned from an analysis of which pairs of markers appear together in
cell lines. If two markers A and B are close on the genome, then they are
unlikely to be split apart in the radiation step. Thus, in this case, if A is
present in a cell line, it is likely that B is present as well. On the other hand,
if A and B are far apart on the genome, then we can expect to have cell
lines that contain just A or just B, and only rarely a cell line containing
both A and B. This positional reasoning can be crafted into a notion of an
experimental distance between two markers.

Using the experimental distances, the problem of finding the genome
order can be modeled as a TSP. Indeed, a genome ordering can be viewed
as a path traveling through each marker in the collection. As usual, such a
Hamiltonian path is readily converted to a tour by adding an extra city to
permit the ends of the path to be joined.

A group at the National Institutes of Health (NIH), led by Richa
Agarwala and Alejandro Schiffer, has developed methods and software
for handling these genome TSP problems in practical settings, including
procedures for dealing with erroneous data (a common occurrence in
laboratories).” The NIH package uses Concorde to permit the software to
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find optimal tours; it has been adopted in a number of important studies,
including the construction of human, macaque, horse, dog, cat, mouse, rat,
cow, sheep, and river buffalo maps.

Aiming Telescopes, X-rays, and Lasers

Although we normally associate the TSP with applications that require
physical visits to remote locations, the problem also arises when sites can
be observed from afar, without actual travel. A natural example is when the
sites are planets, stars, and galaxies, and the observations are to be made
with some form of telescope.

The process of rotating equipment into position to make an observation
is called slewing. For large-scale telescopes, slewing is a complicated and
time-consuming procedure, handled by computer-driven motors. In this
setting, a TSP tour that minimizes the total slewing time for a set of
observations can be implemented as part of an overall scheduling process.
The cities in the TSP are the objects to be imaged and the travel costs are
estimates of the slewing times to move from one object to the next.

In a Scientific American article, Shawn Carlson describes how a TSP
heuristic came to his aid in scheduling a fragile, older telescope to image
approximately 200 galaxies per night. Concerning the need for good TSP
tours, Carlson writes the following. “Because large excursions from horizon
to horizon sent the telescope’s 40-year-old drive system into shock, it was
vital that the feeble old veteran be moved as little as possible”.® Modern
telescope installations are certainly not feeble, but good solutions to the
TSP are vital for the efficient use of very costly equipment.

Finding Planets

Interesting examples of the TSP have been considered in planning work for
space-based telescope missions by NASA. Martin Lu of the Jet Propulsion
Laboratory calls this study the “traveling planet-finder problem” since a
major goal is the discovery of Earth-like planets in orbit around nearby
stars.

As in the case of ground-based equipment, the TSP is used to determine
the sequence of observations to be made by the telescopes. In this setting,
however, the sequencing of observations is made well in advance of the
mission, rather than on a nightly basis. This preplanning is due to the great
amount of fuel consumed in slewing operations and to the length of time
needed to study each star. Martin Lu estimates that approximately fifty stars
would be observed in a three-year mission.
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Figure 3.5
Two-occulter formation visiting 80 stars, by E. Kolemen and N. J. Kasdin.

A difficulty with observing a possible Earth-like planet is that light
directly from its star washes out any image of the planet itself. A pro-
posed solution consists of using a space telescope together with a large
occulter stationed 50,000 to 100,000 kilometers away. Robert Vanderbei
of Princeton University describes this as holding a giant thumb in front of
the telescope’s eye to block out starlight. The telescope remains in a fixed
orbit, while the occulter moves from one position to another, setting up the
observations.

A detailed study of the sequencing of occulter-based telescopes has
been carried out at Princeton University by Egemen Kolemen and Jeremy
Kasdin.” They use a sequence of optimization models to estimate fuel costs
in moving the occulter from star to star. The image in figure 3.5 depicts
their solution when a single telescope works with two occulters, alternating
the observations from one to another; the colored paths represent the tours
taken by the occulters. Note that sub-paths that appear to be isolated in the
figure are actually connected around the back of the sphere. In this test,
the solution picks out 80 of the top 100 candidate stars in a NASA target
list.

X-ray Crystallography

The ground-based telescope TSP is similar to a study by Robert Bland
and David Shallcross in a different domain.® Working with a team at
Cornell University in the mid-1980s, Bland and Shallcross used the TSP
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Figure 3.6
Crystal image drawn by laser.

to guide a diffractometer in X-ray crystallography. The travel costs in this
case are estimates of the time for computer-driven motors to reposition
sample crystals and to aim the X-ray equipment; experiments can consist
of up to 30,000 observations per crystal. Bland and Shallcross reported
improvements of up to 46% in total slewing time with the help of TSP
methods.

Lasers for Crystal Art

The use of pulsed lasers in manufacturing settings provides another oppor-
tunity for this type of “aiming” TSP. A nice example is in the production of
models and artwork burned into clear solid crystals, such as the pla85900
object produced by Mark Dickens of Precision Laser Art, displayed in
figure 3.6. The focal point of a laser beam is used to create fractures at
specified three-dimensional locations in the crystal, creating tiny points
that are visible in the clear material. The TSP is to guide the laser through
the points to minimize production time.

Dickens has adopted heuristic methods from Concorde to handle
very large sets of points needed to obtain high-quality reproductions
of elaborate images. This application holds a place of honor as having
generated the largest industrial instances of the TSP we have encountered
to date, with some examples exceeding one million cities.

Guiding Industrial Machines

In modern manufacturing, machines are often adopted to perform re-
peated tasks, such as drilling holes or attaching items. This is a common
setting for TSP applications.
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Figure 3.7

Printed circuit board with 441
holes. Photograph courtesy of
Martin Grétschel.
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Drilling Circuit Boards

Printed circuit boards contained in common electronic devices often have
numerous holes for mounting computer chips or for making connections
between layers. The holes are produced by automated drilling machines
that move between specified locations to create one hole after another,
and a classic application of the TSP is to minimize the travel time of the
drill head during the production process. Gerhard Reinelt’s TSPLIB test set
contains a number of examples of this type, including an instance based on
the board displayed in figure 3.7.

The use of TSP algorithms has led to improvements of approximately
10% in the overall throughput of circuit-board production lines.” Typical
problems in this class range in size from several hundred cities up to several
thousand cities.

Soldering a Printed Circuit Board

Wiladimir Nickel, an electronics engineer in Germany, wrote that he has
adopted Concorde in a follow-up step in circuit-board production, where
items are soldered onto the surface of the board. He uses a computer
numerical controlled (CNC) machine, equipped with a solder paste dis-
penser, to print solder at specified locations. His machine is displayed in
the photographs given in figure 3.8; the board being created has 256 solder
locations and the TSP solution provides the quickest way to move the
dispenser through the full set of points.
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Figure 3.8

Applying solder to a printed circuit board. Courtesy of Wladimir Nickel.

Engraving Brass

Brass dies are used in printing raised images, such as those found on boxes
of chocolates. The dies were once made by hand, but now they are typically
engraved with heavy-duty CNC milling machines. When a CNC machine
has completed the cutting of a letter or design element, the spindle is raised
and the device moves to the next letter or element. Additional flexibility
in this case comes from the fact that elements to be cut are not single
points, so the machine can be guided to any location above the element.
CNC engraver Bartosz Wucke wrote in 2008 that the application of the
TSP reduced the working time by half in cases where dies have significant
amounts of text or where there are abstract patterns of many points.

Customized Computer Chips

The same class of application, on a much smaller physical scale, arose in
work at Bell Laboratories in the mid-1980s. Bell researchers developed a
technique for the quick production of customized computer chips. The
process starts with a basic chip having a network of simple building blocks,
called logic gates. Portions of the network are then cut with a laser to create
individual groups of gates that allow the chip to perform some described
function. In this case, the TSP is to guide the laser through the locations that
need to be cut. Jon Bentley and David Johnson provided fast TSP heuristic
methods that lowered the slewing time by over 50% on typical examples,
providing an important speedup in the production process.

This application also holds a place of honor as the source of the record
85,900-city TSP instance displayed in figure 1.7.
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Figure 3.9
Gene expression data. Image courtesy of Sharlee Climer and Weixiong Zhang.

Cleaning Silicon Wafers

Another TSP application arises earlier in the production of computer chips.
Standard chips are etched into large circular wafers of silicon and these
wafers must be free of all impurities. The nanomanufacturing firm Applied
Materials has a technique for cleaning defects on wafers and they have used
Concorde to guide the machinery from one defect to another.

Organizing Data

Organizing information into groups of elements with similar properties is a
basic tool in data mining, the process of extracting patterns from data. The
TSP has been adopted in such efforts when there is a good measure of the
similarity between pairs of data points. Using the similarity values as travel
costs, a Hamiltonian path of maximum cost places similar points near to
one another (since closely related points have high similarity measures),
and thus segments in the path can be used as candidates for clusters. The
final splitting into segments is typically done by hand, selecting natural
breakpoints in the ordering.'”

An elegant alternative to this two-stage method was proposed by
researchers Sharlee Climer and Weixiong Zhang.!! In their approach, k + 1
dummy cities are added when creating the TSP, rather than just a single
city. Each of the dummy cities is assigned a travel cost of zero to all other
cities. The additional cities serve as breakpoints to identify k clusters, since
a good tour will use the zero-cost connections to dummy cities to replace
large travel costs between clusters of points.

Climer and Zhang use their TSP+k method as a tool for clustering gene
expression data, adopting Concorde to compute optimal tours and varying
k to study the impact of different cluster counts. The image in figure 3.9 was
produced with their software. The data set displayed in the figure consists
of 499 genes from the plant Arabidopis under five different environmental
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Figure 3.10

The MusicRainbow
device. Courtesy of
Elias Pampalk.

conditions; the shades of gray represent gene expression values; the clusters
are indicated by solid white lines.

Musical Tours

The TSP has also been used to make sense out of vast collections of
computer-encoded music. Elias Pampalk and Masataka Goto, working out
of the National Institute of Advanced Industrial Science and Technology
in Japan, created the MusicRainbow system to support users in discovering
new artists that may appeal to their musical tastes. Pampalk and Goto took
a collection of 15,336 tracks from 558 artists and developed a similarity
measure between each pair of artists, computed by comparing audio
properties of the tracks in the collection. The TSP was then used to arrange
the artists in a circular order, such that similar artists are near to one
another. In this application the cities are the musicians and the travel costs
are the similarity measures.

Using the circular ordering, the music collection can be navigated by
turning a knob, with artist information displayed on a computer screen.
Various identifiers associated with the artists are indicated via a set of
concentric colored rings corresponding to high-level classifications, such
as rock and jazz. A nice feature of MusicRainbow is that all identifier
information is obtained automatically via a search for Web pages, allowing
the system to be easily deployed on any music collection.

Elias Pampalk was involved in a second music-related TSP applica-
tion, together with colleagues Tim Pohle and Gerhard Widmer from the
University of Linz in Austria. The idea this time is to organize a collection
of music tracks into a circular list, such that similar pieces are near to one
another. Such an arrangement allows a user to spin a wheel to pick a piece
suiting their current mood, and the player follows this with a sequence of
similar tracks. In their Traveller’s Sound Player demonstration, the team
used timbral similarities to measure the distance between pairs of tracks.
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A test case included over 3,000 tracks, and the TSP was used to minimize
the total distance in the circular order.

On a more local level, New York University’s Drew Krause adopts the
TSP as an aid in creating individual compositions. Smooth transitions in
music are called conjunct melodies, and they are associated with pleasing
sound. In Krause’s process, Concorde is used to build arrangements with
minimum transitions from one chord to the next; the cities are a collection
of chords and the travel costs are defined as the sum of the half-step
distances between the corresponding notes.

Speeding Up Video Games

Modern video games use large amounts of data to give objects in their
displays an appearance of physical material, such as wood or metal. The
basic components of this display data are called textures and libraries of
thousands of textures are available, ranging from bricks to rust. Any scene
in a game requires a specific set of textures to render the displayed objects,
and a challenge is to get the texture data onto the video monitor as quickly
as possible, to give smooth transitions from scene to scene. This is where
the TSP can help.

A basic property of data access on digital video disks (DVD) is that
reading items stored sequentially is much faster than accessing items from
random locations. It follows that the layout of texture data on a disk can
have a large impact on the time needed to render a game scene. It is highly
desirable to have sets of textures used in the game residing sequentially,
but this is typically not possible unless textures are duplicated on the disk,
greatly increasing the storage requirement. As an alternative, the layout
can be chosen such that the total number of breaks is minimized, where
a break occurs when a set of textures needed in the game is stored in more
than one location on the disk. If a texture set is split into k intervals, then
it contributes k — 1 breaks to the layout. This is the same measure used
in the genome-mapping application, where texture sets correspond to cell
lines. In this TSP setting, the cities are the textures and the cost of travel
between two textures is the number of sets that contain one of the textures
but not the other. Like the genome problem, this application calls for a
Hamiltonian path rather than a tour, which is handled in the usual manner
via the addition of an extra city.

This application was described by Glen Miner of the Canadian firm
Digital Extremes. Digital Extremes has experimented with the Concorde
code for producing texture layouts, reporting significant improvements
through the use of the TSP.
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Out Figure 3.11
Scan chain.

Tests for Microprocessors

The computing technology firm NVIDIA recently adopted Concorde in
optimizing the on-chip circuitry used to test their graphics processors. This
is a common use of the TSP in the design of modern computer chips, where
post-manufacturing testing is a critical step in the production process.

To facilitate such testing, scan chains were introduced in the 1980s to
link components, or scan points, of a computer chip in a path having input
and output connections on the chip’s boundary, as illustrated in figure 3.11.
A scan chain permits test data to be loaded into the scan points through the
input end, and after the chip performs a series of test operations the data
can be read and evaluated at the output end.

The TSP is used to determine the ordering of scan points to make
the chain as short as possible. Minimizing the chain length helps to meet
a number of goals, including saving valuable wiring space on the chip
and saving time in the testing phase by allowing signals to be sent more
quickly.

In most cases chip manufacturing technology allows only horizontal
and vertical connections, thus the distance between two points in a scan-
chain TSP is measured using paths that travel only horizontally or verti-
cally, such as walking the streets of Manhattan. A drawing of an optimal
path for a 764-city scan-chain problem is given in figure 3.12. This example

Out

i Figure 3.12

Scan-chain TSP
f with 764 cities.

Inm
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was provided by Michael Jacobs and Andre Rohe of Sun Microsystems and
it was solved using the Concorde code. To reduce the time required for
testing, a modern computer chip will typically have multiple scan chains;
the 764-city example was one of twenty-five chains on the given chip.

Scheduling Jobs

The German firm BOWE CARDTEC delivers hardware and software
products for managing the production of smart cards, such as credit cards
and identification cards. Their customers typically produce many types
of cards on the same hardware and this requires reconfiguration steps
between production runs, such as a change in the ribbon color and the
insertion of the correct blank cards. The setup time between different jobs
is significant and reduces the overall daily production. To address this,
BOWE CARDTEC software uses the TSP to sequence jobs in an order that
minimizes the total setup time: the cities are the jobs and the travel cost
between jobs i and j is the time it takes to reconfigure the machine for job j
after it has completed job i. The firm reports that using tours obtained with
Concorde reduced the total setup time by up to 65% in typical applications,
resulting in significant gains in the overall rate of production.

This type of scheduling application was first described by Merrill Flood
in a lecture given in 1954. In typical examples, the setup time to move from
jobi tojob j is different than the time to move from job j back to job i. The
TSP thus takes the asymmetrical form, where the cost of a tour depends on
the direction of travel.

And More

The areas of application we have described by no means exhaust the reach
of the traveling salesman. Indeed, intriguing new uses for the model appear
regularly in the applied mathematics literature. Successful projects that
have been reported include the following:'?

e planning hiking paths in a nature park

» minimizing wallpaper waste

o picking items in a rectangular warehouse

e cutting patterns in the glass industry

o constructing universal DNA linkers

o estimating the trenching costs for connecting a telescope array
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e studying problems in evolutionary change

e assembling a genome map from a library of known subsequences
o gathering geophysical seismic data

o compressing large data sets of zero-one-valued arrays

Some of these settings are wildly distant from actual salesmen planning
their tours.
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We do not claim that our program is infallible, but rather that it
gives good answers in a computationally feasible amount of
computer time.

—Robert Karg and Gerald Thompson, 1964,

Asalesman on the road will not be impressed by a claim of TSP unsolv-
ability. She will nonetheless start up the car and get on with the task
of visiting customers. This practical mind-set argues for an alternative
approach to the problem: let’s give up for now the notion that only the
absolute best solution will do, and focus on delivering, as quickly as
possible, a near-optimal route. Such a view opens the door to all sorts of
creative ideas for getting the salesman home in time for dinner. Indeed,
some of the techniques developed and employed in this branch of TSP
research are now workhorses in computational science, such as simulated
annealing, genetic algorithms, and local search. Tour finding serves as a
sandbox for testing methods that aim to select a good solution from a large
population. It is the playground of TSP studies, albeit one with serious
consequences for numerous disciplines.

The 48-States Problem

The challenge of the 1940s was to route a salesman from Washington, D.C,,
through each of the 48 states in the United States, and back to Washington.
Julia Robinson narrowed this down by proposing the salesman visit each of
the state capitals, but it does not appear that anyone took the step of writing
out a table of travel distances to specify completely the problem, most likely
because a solution for such a large instance of the TSP appeared well out of
reach.

Dantzig, Fulkerson, and Johnson clearly had a different opinion of the
solvability of the challenge, and, without access to a standard set of travel
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Cities in the 48-States Problem.

distances, went ahead and created their own version of the data. They
opted for the quite different selection of cities displayed in figure 4.1; they
hit every state, but only twenty of the locations are capitals. Despite this
deviation, there is no mystery to their choice. “The reason for picking this
particular set was that most of the road distances were easy to get from an
atlas.”” Fair enough, but the selection did give the researchers an immediate
head start in the TSP computation: in the standard Rand McNally atlas they
consulted, the shortest drive from Washington to Boston passed through
seven other cities on the salesman’s list. In a bit of a gamble, Dantzig
et al. decided to drop these seven northeastern locations. Their reasoning
is as follows. If the optimal tour through the remaining cities includes
the direct link from Washington to Boston, then the RAND team could
solve the original problem by rolling down the window and waving at
Baltimore, Wilmington, Philadelphia, Newark, New York, Hartford, and
Providence as they drove by. On the other hand, the 42-city tour might
reach Washington by some other route, in which case it would have been
back to the drawing board.

As you can guess by looking at the map, the optimal tour does indeed
use the Washington-Boston link, and thus Dantzig et al. were justified in
working with the reduced set of locations. We should point out that things
are not so convenient today; using Google Maps, the direct route from
Washington to Boston is 451 miles, while adding the remaining seven stops
brings the trip to 491 miles. Much of the savings, however, comes from
using Interstate 84 through Connecticut and into Massachusetts, and this
section of the highway first opened for traffic in 1967.
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The data collected from Dantzig’s Rand McNally atlas is symmetric,
giving distances that do not depend on the direction of travel. (Throughout
the chapter we will assume that travel costs are symmetric.®) Dantzig et al.
adjusted these values by subtracting 10 from each number, then dividing
by 17 and rounding the result to the nearest integer. “This particular
transformation was chosen to make the d;; of the original table less than
256, which would permit compact storage of the distance table in binary
representation; however, no use was made of this.”* The full table of
adjusted distances is contained in their research paper, making precise the
problem that had been solved.

Pegs and String

Dantzig et al.’s data distorts somewhat the natural geometry of the problem,
but the Euclidean version, where straight-line distances are used, can
nonetheless be an effective tool in comparing potential tours. Indeed, the
tour-finding approach adopted by the team is based entirely on straight-
line approximations.

No hint as to how the USA tour was originally obtained is given in the
famous Dantzig et al. paper, but in subsequent lectures Dantzig revealed
that a physical device was used. The team constructed a wooden model of
the problem, placing pegs at each of the 49 locations, and used a string, tied
to a starting city, to wrap around the pegs and trace out a tour. Dantzig
described this as a great aid in working with problems by hand; the taut
string quickly measures possible routes and identifies likely continuations
of subpaths. The model does not provide a solution algorithm in any sense,
but with its help Dantzig et al. managed to locate the tour that later proved

Figure 4.2

A peg-and-string tour
through Germany. Courtesy
of Konrad-Zuse-Zentrum
fur Informationstechnik
Berlin.
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to be the optimal route through the 49 cities. Their solution weighed in at
699 units, as measured by the table. Translating this back to atlas distances,
the tour covered the United States in 12,345 miles.

Growing Trees and Tours

There is something refreshing about taking a clean sheet of paper, or
perhaps a wooden model, and attempting to lay out a good tour. The
inclination is to pick a starting point and grow a path, adding one city after
another, or, from another point of view, adding one road segment after
another. Dantzig et al. relied on intuition to stretch their string from city to
city, but simple algorithms can perform the task fairly well.

Nearest Neighbor

If you want to construct a tour, the simplest idea is to always drive to the
closest city among those not yet visited. This nearest-neighbor algorithm is
sensible, although it only rarely finds a shortest-possible solution.

The drawings in figure 4.3 illustrate nearest neighbor in action on
the 42-city version of the USA problem, using the distances provided by
Dantzig et al. The tour starts in Phoenix and spreads quickly across the
southern part of the country. It looks very good for many steps, but when
we arrive in the Pacific North West we have no place to go other than
to travel all the way back to the East Coast to pick up cities carelessly
skipped over during the first pass through the region. This is typical of the
algorithm, where we paint ourselves into a corner by not looking ahead
when moving from city to city. The final tour in figure 4.3 measures 1,013
units, compared with Dantzig et al.’s optimum of 699 units.

Now, if you are a devil’s advocate, you can easily create a TSP instance
where nearest neighbor returns a tour that is as bad as you can imagine in
comparison to an optimal solution. The point to note is that the algorithm
will be forced to take the last leg of the journey, back to the starting city,
regardless of its travel cost. So if we increase by 1,000,000 the cost of travel
between Montpelier and Phoenix, then poor nearest neighbor will still
select the same tour, this time at a total cost of 1,001,013, while the optimal
solution remains at 699.

This nasty modification produces a legitimate instance of the TSP, but it
does not resemble the types of travel distances we see in road versions of the
problem. Indeed, any reasonable instance will satisfy the triangle inequality:
for any three cities A, B, and C, the cost to travel from A to B plus the cost
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Figure 4.3
A nearest-neighbor tour.

B
Figure 4.4 cost(A,B) + cost(B,C)
The triangle inequality. nggziifg?;n
A C

to travel from B to C must not be less than the cost to travel from A directly
to C. This condition rules out our nasty case. In fact, it can be shown that
with the triangle inequality, and, as usual, symmetric travel costs, nearest
neighbor will never do worse than 1 4 log (n)/2 times the cost of an optimal
tour for an n-city TSP.” So a fifty-city nearest-neighbor tour is guaranteed
to be no longer than four times an optimal route, and a million-city tour
no worse than eleven times optimal. Perhaps not a great comfort if you
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Figure 4.5

A greedy tour.

are depending on the algorithm for your travel plans, but we will see soon
methods with better guarantees.

The Greedy Algorithm

Nearest neighbor grows a single path that eventually snakes around and vis-
its every city. The method is a greedy one, extending the path in the shortest
possible manner at each step. The name greedy is, however, reserved
for an alternative algorithm that grows many subpaths simultaneously,
adding shortest available road segments wherever they may be found. The
operation of the algorithm on the USA problem is illustrated in figure 4.5;
the subpaths grow across the map and eventually link up into a tour.
When describing TSP methods such as greedy, it is convenient to
adopt graph-theory terminology, with cities being the vertices of the graph
and city-to-city road segments the edges. A tour is a Hamiltonian circuit,
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consisting of a selection of edges corresponding to road segments traveled
by the salesman.

The greedy algorithm considers edges in a shortest-first order, adding
an edge to the solution only if it joins two subpaths into a longer subpath.
The progress of the algorithm looks fantastic early on; the first twenty edges
or so in the USA example are very short indeed. The difficulty arises late in
the process, when we are forced to accept several very long edges to make
the final connections, bringing the tour length up to 995 units.

On large test instances greedy almost always significantly outperforms
nearest neighbor. For example, if we drop cities randomly into a square
and take straight-line travel distances, then greedy regularly finds tours of
length no more than 1.15 times the optimal value, while nearest neighbor
produces results in the range of 1.25 times optimal. Unfortunately, this is
only an empirical observation. As far as worst-case guarantees go, greedy is
known only to do no worse than 1/2 4 log (n)/2 times optimal on instances
satisfying the triangle inequality. So just a tiny bit better than the guarantee
for nearest neighbor.

Inserting Cities Into a Partial Tour

An immediate question in 1954 was to determine to what extent the
Dantzig et al. success relied on the fact that the peg and string model
provided an optimal tour, something that could not be counted upon in
further studies. In reply, young RAND associate John Robacker jumped
in with a series of tests the following summer, solving several 9-city
instances with the Dantzig et al. method, starting with random tours. The
small examples in his study were not very convincing, but Robacker also
described a general tour-finding method that could be automated when
attacking large data sets.®

In connection with these experiments, A. W. Boldyreff suggested
an approximation procedure, the merit of which lies in its inherent
simplicity and in the rapidity with which it may be applied. An
application of this approximation method to the 49-city problem
of [1] gave a tour of 851 units as compared with the optimal of 699
units, an error of 20%.

The idea is to start with a subtour through a small number of cities and
stretch it out, like a rubber band, to enclose one additional city after
another.

The Boldyreff/Robacker technique suggests a class of methods called
insertion algorithms. The algorithms come in different flavors, cheapest,
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Figure 4.6
A farthest-insertion tour.

nearest, farthest, and random, depending on the rule for selecting the next
city to add to the growing subtour. In each of these methods the new city
is inserted into the spot that causes the smallest increase in the subtour’s
length.

Robacker described and tested cheapest insertion, where each new
city is chosen to be the one that keeps the subtour as short as possible.
Nearest insertion chooses the city that gives the shortest distance to any
city currently in the subtour; farthest insertion chooses the city that is
farthest from the subtour cities; and random insertion selects the next city
at random from among those not yet in the subtour.

My favorite among these algorithms is farthest insertion; it obtains a
good overall shape for a tour early on, and then completes the details as the
last cities are added. The growth process for this variant is illustrated on
the USA problem in figure 4.6, starting at Phoenix, expanding out to New
Orleans, Minneapolis, and the two Portlands in stage five, and gradually
building a tour of length 778.
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Cheapest and nearest insertion have both been shown to produce tours
no worse than twice the length of optimal solutions when the triangle
inequality holds.” This is quite nice, but it is curious that farthest insertion
comes with only a log (n) guarantee, even though it is generally the best-
performing variant in practice.

Mathematical Trees

Nearest neighbor and greedy typically end up with disappointing tours,
despite their beautiful-looking early selections. Greed does not pay in rout-
ing the salesman. Surprisingly, a greedy method does produce guaranteed
optimal solutions to the related problem of selecting a minimum-cost set of
roads to connect a group of cities. Such a minimum-cost structure for the
USA data set is displayed in figure 4.7. It has length 591 units, and is thus a
good bit shorter than an optimal tour.

My academic great-great-great-great-great-grandfather, Arthur Cayley,
studied graphs such as that in figure 4.7. Note that the structure is con-
nected and contains no circuits. Cayley used the wholesome name trees for
such graphs. His mathematics writing has a nice botanical flavor, referring
to vertices as “knots.” “In a tree of N knots, selecting any knot at pleasure
as a root, the tree may be regarded as springing from this root, and it is
then called a root-tree.”® Rather than springing from a root, we will use the
structure to fashion a TSP solution, also guaranteed to be no longer than
twice the length of an optimal tour. Trees, by the way, were the subject of
the mysterious mathematical problem solved by Matt Damon’s character
in the film Good Will Hunting. The notes drawn by Damon in the scene
displayed in figure 4.8 describe Cayley’s formula for the number of trees
with n vertices, together with several small examples.

Figure 4.7
Optimal tree.
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Figure 4.8

Matt Damon in Good
Will Hunting. Copyright
Miramax Films.

You likely have already convinced yourself that an optimal solution to
the connection problem will indeed be a tree. The point is that we should
never complete a circuit when building a network, since the ends of the final
edge are already connected. The greedy algorithm in this case, working in a
shortest-first order, includes an edge in the solution only if it is not possible
to travel from one of its ends to the other using previously selected edges.
The algorithm grows larger and larger connected components until a tree
spanning the entire set of cities is produced. It is remarkable, and not too
difficult to prove, that this simple method always produces a spanning tree
of minimum cost.’

A tree is not a tour, but it does give a means to travel from city to city.
One way to arrange this is as follows. Whenever we reach a new city, check
if it is an end of an unexplored tree edge and, if so, choose such an edge and
move along it to reach another city. If, on the other hand, we have already
traveled along each of the tree edges meeting the new city, then backtrack
until we return to a city that meets unexplored edges. Such a trip is called
a depth-first-search traversal of the tree. It eventually reaches all cities and
backtracks to the start.

The operation of depth-first search is illustrated on a 6-city tree in
figure 4.9; the doubled edges are the ones along which we have backtracked.
Notice that when the process ends we have traveled along each edge exactly
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Figure 4.10
Tour created from
an optimal tree.

two times, implying the cost of the trip is twice the cost of the tree. This
is good news, since the cost of an optimal tree cannot be more than the
cost of an optimal tour. Now, to obtain a tour from the traversal, we simply
shortcut over the backtracking steps. These shortcuts are drawn in red in
the final tour in figure 4.9.

Applying the algorithm to the USA problem produced the tour of
length 823 units displayed in figure 4.10. The depth-first-search traversal
in this case started in Phoenix; whenever there was more than one choice
for a tree edge to explore, the edge leading to the subtree having the smallest
number of cities was taken.

Christofides’ Algorithm

Growing a tree to guide a salesman is a nice idea, but to realize its full power
we need to step back and view things from the perspective of Leonhard
Euler. A depth-first-search traversal of the tree is in fact a Eulerian walk
through the graph obtained by duplicating the tree’s edges. The duplication
step ensures that each vertex of the graph meets an even number of edges,
the condition unfortunately violated by the bridges of Konigsberg.

Rather than duplicating the tree, we can instead add a set of edges that
meets every odd vertex exactly once, where we call a vertex odd if it is
the end of an odd number of tree edges. The resulting graph has no odd
vertices, and therefore admits a Eulerian walk that can be shortcutted into
a tour.

To illustrate the idea, figure 4.11 displays the twenty-six odd vertices
in the USA tree, and a set of thirteen edges, in red, that meet each of
these vertices exactly once. Such a set of edges is called a perfect matching,
and Jack Edmonds showed how to compute, in polynomial time, a perfect
matching of minimum cost. Edmonds’s result is a milestone in the field
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Figure 4.11
A minimum-cost perfect matching of the odd-degree vertices.

Figure 4.12
Nicos Christofides, 1976.

of optimization discussed in chapter 6. For now we note only that this
is what the doctor ordered, since, as we argue below, the cost of such an
optimal matching can be at most half the cost of an optimal tour. Adding
the matching to the tree and shortcutting a Eulerian walk in the resulting
graph, we obtain a tour of cost no more than one-and-a-half times that
of an optimal solution to the TSP. This is a nice guaranteed performance,
and in practice the algorithm typically produces even better solutions. Its
operation on the USA problem is displayed in figure 4.13, resulting in a
final tour of length 759 units.

Now, to estimate the cost of the optimal matching in general, note first
that walking around a TSP tour will take us from odd vertex to odd vertex,
with a few even vertices in-between. Shortcutting the even vertices results
in a circuit through the odd vertices only, and such a circuit is the union of
two perfect matchings, taking every other edge, starting with either the first
edge or the second. One of these two matchings must have cost no greater
than half the cost of the tour, and Edmonds’s optimal matching can only
be cheaper still. Voila! This three-step argument is illustrated in figure 4.14,

73



$EE3E58
SEERESS
§EE3258
§EE3E58
§EE5555
BFFFFEE



Searching for a Tour

where we start with an optimal USA tour, shortcut it to a circuit through
the odd vertices, and split the circuit into two matchings.

The full process of combining Euler and Edmonds was strung together
by Nicos Christofides in 1976, and it holds a place of honor in the pantheon
of the TSP: no polynomial-time algorithm is known to have a better worst-
case guarantee than Christofides’ method."

New Ideas?

The purity of laying down a tour, piece by piece, is what often attracts
people and ideas to the TSP. And it is certainly a good place to gain
firsthand experience with the complexity of the problem.

If you want to take a shot at the problem, then improving the perfor-
mance guarantee of Christofides is a clear target. I must, however, warn
you that it may be difficult to beat the factor of one-and-a-half times
optimal, as we discuss in chapter 9. On the other hand, it would not be
surprising to see new methods that fare well in practical competitions with
existing tour-growing algorithms. Alongside the well-known methods we
have discussed, TSP fans and researchers have proposed numerous alter-
natives, including clustering techniques, partitioning methods, spacefilling
curves, and more. To date, none of these tour-growing algorithms can
beat in practical computation the tour-improvement techniques we treat
in the next section, but new ideas could certainly narrow the performance

gap.

Alterations While You Wait

A spiffy drawing of a USA tour, displayed in figure 4.15, accompanied
Martin Gardner’s TSP article in Discover, April 1985. The combination
of a popular journal and renowned problem solver brought considerable
attention to the salesman, but it also stirred up trouble with readers. A close
look at the drawing reveals the source of the hubbub: there are obvious
shortcuts in the route through the cities!

In a phone conversation with IBM mathematician Ellis Johnson shortly
after the article appeared, Gardner described that the tour was in fact
obtained from the work of Dantzig et al. The problem did not lie with the
tour, but rather with an overzealous editor who went ahead and shifted the
locations of the cities over to the 48 state capitals. The Discover caption
is as follows. “The traveling salesman problem is one of math’s most
enduring unsolved puzzles. Here’s the shortest route for a salesman—or
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Figure 4.15

United States tour.

Nina Wallace, illustrator,
Discover, April 1985,
page 87.

Figure 4.16

Optimal United States

tour. Ron Barrett, illustrator,
Discover, July 1985,

page 16.

'

Ba. By traveling this route, a salesman could visit all 48
state capitals and clock the lowest possible mileage.

salesperson—visiting 48 state capitals.” Bad luck. Dantzig et al.’s choice
of convenience in 1954 left Gardner scrambling for a correction to his
publication. This is what led to the phone conversation with Johnson, who
directed Gardner to TSP star Manfred Padberg.

Padberg would certainly have been able to solve the 48-capitals prob-
lem, but he presumably could not be reached. In the end it was Shen Lin,
of Bell Labs, who stepped up with a new tour, published in Discover four
months after the original. Lin did not have an exact-solution procedure,
but he was a master of tour-improvement methods.

The journal was careful in describing the tour this second time around.
“Is he right? Lin is sure of it. So convinced of his results is he that he’s
personally offering a prize of $100 to anyone who can find a route for the
salesman, using his distances between capitals, shorter than 10,628 miles.”
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The editors sent a table of travel distances to anyone interested in taking up
Lin’s challenge, but his money was safe. The tour is in fact optimal.

Exchanging Edges

Tour-improvement methods, championed by Lin, do exactly what the
name implies. They take as input a tour, search for flaws, and correct them
if possible. For example, the spike in the initial Discover tour reaching into
Tennessee suggests something is wrong with that portion of the route, and
the steps outlined in figure 4.18 show how to correct it. We first delete the
two edges in the spike and a third edge just to the north, breaking the tour
into three segments, one of which is the isolated capital of Tennessee. The
segments are rejoined using three new edges, indicated in red. Since the
three new edges are together much shorter than the three deleted edges,
this 3-opt move improves the tour.

Figure 4.17

Shen Lin, 1985.
Photograph courtesy
of David Johnson.

Figure 4.18
Improving the Discover tour
with a 3-opt move.
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Lin’s computation for Discover involved an extensive search for tour
improvements, including 2-opt moves, where two edges in a tour are
deleted and the tour is reconnected with two shorter edges, 3-opt moves,
and more. To explore the ideas he brought to bear on the problem, let’s
return to the nearest-neighbor tour constructed in our first attempt at the
42-city USA example, a fine candidate for improvement.

Perhaps the oldest theorem concerning the TSP is the fact that for
Euclidean instances of the problem an optimal tour will never cross itself.
The way to prove this is with a 2-opt move: replacing a crossing pair of
edges will always shorten a tour. An obvious move of this type is indicated
in figure 4.19. This exchange saves 31 units, bringing the total cost of the
tour down to 982 units. And many more such exchanges are available.

By repeatedly making improving 2-opt moves (27 of them altogether),
we arrive at the tour of cost 758 displayed in figure 4.20. At this point
there exist no further improving moves with just two edges, but this simple
process has brought our faulty nearest-neighbor tour to within 8% of the
optimal route for the salesman.

Figure 4.19
An improving 2-opt move for the nearest-neighbor tour.

Figure 4.20
Tour with no further improving
2-opt moves.
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Figure 4.21

Shen Lin and Brian Kernighan, Bell Labs
News, January 3, 1977. Image courtesy
of Brian Kernighan. Reprinted with
permission of Alcatel-Lucent USA Inc.

I k
I THINK WE'VE GOT IT, Shen Lin, left. seems to be saying to Brian
Kernighan. The MH math and computer experts devised a new,

efficient solution to the “Ti ng " problem.

Lin-Kernighan

Bashing on, we could now consider all possible 3-opt moves, checking if
any might lead to further improvements. Then 4-opt moves, 5-opt moves,
and so on up the line. Success with 3-opt was indeed reported by Lin
in the mid-1960s, but the computational burden of searching directly
for improving k-opt moves makes the process impractical for k much
larger than 2 or 3. Nonetheless, Lin and computer-science pioneer Brian
Kernighan accomplished this in a beautifully constructed algorithm.!!
Their work is one of the great achievements of TSP research.

The Lin-Kernighan method is elaborate, but the main idea can be
gathered from the sketches in figure 4.22. In the display, the initial tour
is laid out as a circle; this makes the process easier to follow, but be aware
that the lengths of edges in the sketches are not meant to indicate travel
costs.

The search begins by selecting a home city, as well as a tour edge
meeting the selected city and a non-tour edge meeting the selected edge’s
other end. These are indicated by the red city, red edge, and blue edge in
the second sketch. Such a triple is considered only if the travel cost of the
blue edge is less than the travel cost of the red edge, with the plan being to
remove reds and add blues. In the first step we can accomplish such a red-
blue exchange by removing also an appropriate tour edge at the far blue
end and adding the return segment to the home city, as indicated in the
sketch. If this 2-opt move improves the tour, then great, we record how
much it saves, but we continue the search in the hope of finding a greater
improvement later on.
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Figure 4.22
Lin-Kernighan search
for a k-opt move.

(6)

The next step, illustrated in the third sketch, is to paint the second tour
edge red (the one we just tried to delete), and to consider a blue alternative
to the direct route home. This extension is explored only if the two blue
edges together have cost less than the two red edges. Again in this case, it
is possible to come home by removing a tour edge at the far blue end and
adding the indicated return segment. We record this potential 3-opt move
if it gives the biggest savings thus far.

The search continues to further red-blue pairs, as long as the sum
of blue costs is less than the sum of red costs. If we reach the end of
the line, where it is no longer possible to add another pair of edges,
then we backtrack and explore alternative blue candidates at earlier levels.
Eventually we halt the process, either due to time considerations or by
running out of edges to consider.
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244
244

Figure 4.23
Five iterations of Lin-Kernighan.

At the end of the search we take the recorded move yielding the biggest
savings, apply it to our tour, and begin again from the newly improved
solution. If we failed to find any improving moves, then we return to our
starting tour, select a new home city, and attempt another search.

Red-blue, check the home route. Red-blue, check the home route.
Sounds easy enough, but there are plenty of devils in the details. Fortu-
nately, together with great computational results, Lin and Kernighan layed
out a crystal-clear exposition of their many ideas for implementing and
enhancing the search algorithm. With their original paper as a guide, over
the past forty years Lin-Kernighan has been engineered to precision, with
current implementations capable of producing very good tours to huge TSP
instances, having ten million cities and more.

The operation of Lin-Kernighan on the USA data set is illustrated in
figure 4.23, starting with the tour obtained from repeated 2-opt moves. The
algorithm finds an optimal solution in five iterations; in each step the edges
colored red are those that are deleted from the tour.

It should not come as a surprise that the original computer code of Lin
and Kernighan also makes short work of the USA example, using random
starting tours. “The probability of obtaining optimum solutions in a single
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trial is close to 1 for small-to-medium problems, say up to the 42-city
problem.”? It is remarkable, however, that their basic method, designed
for instances with only several hundred cities or fewer, has served as the
cornerstone for the majority of the most successful TSP heuristic methods
developed in the past several decades, even as much larger examples have
been tackled.

We must note that the great practical performance of k-opt methods
is unfortunately not accompanied by great worst-case guarantees. For
example, repeatedly making improving 2-opt moves is only guaranteed to
produce a solution no worse than 4./n times longer than an optimal tour
on instances satisfying the triangle inequality.'* This is the dark side of Lin-
Kernighan, but don’t be overly concerned when applying the algorithm:
this king of methods typically produces very good solutions indeed.

Lin-Kernighan-Helsgaun: LKH

The long reign of Lin-Kernighan in practical computation has been aided
by a steady stream of enhancements supplied by the research community.
Most of these are tweaks of the original ideas, but computer scientist Keld
Helsgaun came along with a bombshell in 1998.

Helsgaun’s main contribution was a reworked version of the core search
engine, something that had remained basically intact for twenty-five years.
Whereas standard Lin-Kernighan can be viewed as a search for a sequence
of 2-opt exchanges that taken together result in an improving k-opt move,
the new method searches for a sequence of 5-opt exchanges. That is, rather
than adopting the step-by-step red-blue search, Helsgaun devised a scheme
to consider ten edges at a time, five reds and five blues.

Ten edges. The first thing you should think when you see this is “that’s
a lot of edges.” Indeed, looking at every possibility for five reds and five
blues would slow the algorithm to a crawl. To get around this, Helsgaun
limits his search to those sets of reds and blues that could potentially be
created by a step-by-step red-blue search, if we ignored the condition that
the blues must have cost less than the reds at each step. By considering any
such sequential 5-opt exchange in a stroke, Helsgaun’s method can explore
improving moves that simply cannot be found by the standard algorithm.

The 5-opt moves, combined with a bag of assorted tricks, allowed LKH
to set a new standard in tour finding. “For a typical 100-city problem the
optimal solution is found in less than a second, and for a typical 1000-
city problem [the] optimum is found in less than a minute.”!* This was
an amazing jump in practical performance, in a field of study considered to
be quite mature at the time.
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Pancake Flipping, Bill Gates, and Big LKH Steps

When news broke that Helsgaun was putting up improved tours for a
number of well-known challenge problems, there was plenty of speculation
as to how he was able to successfully employ the 5-opt strategy in practical
computation. To understand this, I must point out that in the twenty-five
years between Lin and Kernighan’s research paper and the announcement
of LKH, there had been only a small handful of efficient computer codes
implementing the standard algorithm. The Lin-Kernighan search method,
although well described, is difficult to convert into software that can be run
on large data sets.

Lin-Kernighan may be difficult, but LKH would appear to be impossi-
ble. Indeed, a great feature of working with a red-blue sequence is that at
each step there is only one way to come home. In other words, if we remove
two edges from a tour, then there is a unique way to hook up the resulting
subpaths to obtain a new tour. A quick calculation shows that LKH, on the
other hand, must handle 148 possibilities for joining up the five subpaths
involved in a sequential 5-opt move. So 1 versus 148, or difficult versus
very, very difficult.

Helsgaun’s secret was revealed when he made his entire computer code
available to researchers. Going through his files, Dave Applegate and I
realized that in fact there was no stealthy method: the code contained a full
listing of the 148 cases, independently covering each possibility. Helsgaun
had put in a Herculean effort to write a correct and efficient code to
implement an extremely complex algorithm.

Helsgaun’s code and the performance of LKH were exciting, but it left
one wondering if moving up to 6-opt exchanges might be better yet. Dave
wrote a small computer code and calculated that sequential 6-opt moves
created 1,358 possibilities for reconnecting a tour. That would be daunting
enough, but why stop at 6-opt? Well, by the time we get to 9-opt there are a
whopping 2,998,656 cases that must be treated. That would be a job indeed.

Not all was lost, however. Dave’s code was able to list the reconnection
tasks that must be handled, one by one. And an examination of LKH
showed a regular pattern in the instructions needed to reconnect the tour.
Combining these, we were able to create a computer program that could
produce the actual computer code to handle a k-opt move, for any value of
k. A computer code building a computer code.

This sounds good, but it resulted in lots of code: 6-opt, 120,228 lines;
7-opt, 1,259,863 lines; and 8-opt, 17,919,296 lines. This was all in the
C programming language. Although difficult to compile into a machine
workable form, the codes did run and produce interesting results. But 8-opt
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as a limit was no more satisfying intellectually than 5-opt, and generating
the full list for 9-opt was out of the question.

Dave kept up his courage. He had the idea that if we could make the
generating code more efficient, then there would be no need to write out
the full list of cases. The code-generation method could instead produce
the steps needed to handle each case on-the-fly during an execution of a
k-opt search. The method would still be limited by the computing time
required to execute the search steps, but it potentially permitted the use of
much larger moves.

Speeding up these code-generation calculations is closely related to the
pancake-flipping problems famously studied by Microsoft’s William Gates
and TSP expert Christos Papadimitriou, while Gates was an undergraduate
student at Harvard University. A flip of a top portion of a stack of pancakes
corresponds to a reversal of a subpath in a tour, which is what happens
in a 2-opt move. An implementation of a k-opt code generator calls for
an algorithm to find a minimum number of flips to rearrange a tour in
the order produced by a k-opt move, and this is a variant of the Gates-
Papadimitriou work."> We managed to get this running, resulting in an
efficient on-the-fly search mechanism for sequential k-opt.

Helsgaun incorporated similar ideas into a powerful upgrade to his
LKH code, allowing users to specify the size of moves that will be strung
together. Demonstrating the reach of the new software, Helsgaun employed
10-opt moves in a computation on a 24,978-city Sweden data in 2003,
producing a tour that was shown to be optimal in the following year.

Borrowing from Physics and Biology

Taking a big picture of tour finding, viewing the TSP as just one example of
a general search problem, proves to be useful both in finding good tours and
in devising multipurpose techniques. The idea is to produce metaheuristics,
that is, heuristic methods for the design of heuristic methods. The general
nature of this work has brought in researchers from fields of science to join
in the hunt for good tours.

Local Search and Hill Climbing

A useful analog in this arena is to think of tours as lying on a landscape,
with the elevation of each tour corresponding to its quality. The type of
picture to have in mind is one like the Gasherbrum group of mountains
displayed in figure 4.24: good tours correspond to peaks of the mountains,
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Figure 4.24
Gasherbrum group. Image
by Florian Ederer.

with the optimal tour lying on top of mighty Gasherbrum II. A heuristic
algorithm can be viewed as moving through the landscape in search of high
land.

For this picture to make sense there should be a notion of when two
tours are located near to one another. This is typically handled by creating
neighborhoods around each tour. For example, two tours can be defined to
be neighbors if one can be reached from the other via a 2-opt exchange, or
via an exchange found by Lin-Kernighan. Large neighborhoods are useful
for navigating around a landscape, but they should be constructed so that
algorithms can view and evaluate neighbors.

Tour-improvement methods, such as repeatedly making improving
2-opt moves, are often called hill-climbing algorithms, since they can be
viewed as walking up a sequence of neighboring tours, always moving to
higher ground. At each step we do a local search for a nearby higher point. If
we are thorough in our search, then the algorithm will terminate at a peak,
or at least a plateau, since at this point all local moves will be either downbhill
or flat. A full run of the algorithm begins at the point corresponding to the
starting tour and then scoots up a slope to reach a local peak.

Note that the choice of a starting tour can determine the fate of a hill-
climbing approach: if the starting tour lands midway up a small hill, then
the algorithm will be limited to reaching the modest-quality tour associated
with the hill’s peak. For this reason Lin and Kernighan proposed to carry
out repeated runs of their algorithm from random starting solutions. The
idea is to throw darts into the landscape. If we toss enough darts, then there
is a decent chance of hitting a slope leading to a peak of good height.

Random tours provide a nice distribution of darts, but they have the
disadvantage of typically starting far down in valleys, due to their poor tour
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quality. For a large TSP instance it can take a long time to walk from a valley
to a peak. A compromise approach is to use nearest-neighbor darts, gaining
randomization from the selection of the starting city.

Simulated Annealing

In simulated annealing heuristics, the hill-climbing strategy is relaxed to
allow the algorithm to accept with a certain probability a neighbor that is
worse than the current solution. At the start the probability of acceptance
is high, but it is gradually decreased as the run progresses. The idea is to
allow the algorithm to jump over to a better hill before switching to a steady
climb.

The paper of Scott Kirkpatrick, Daniel Gelatt, and Mario Vecchi that
introduced the simulated-annealing paradigm studied the TSP, reporting
on heuristic tours for a 400-city problem.'® The authors of the paper write
that the motivation for the method comes from a connection with statistical
mechanics, where annealing is the process of heating a material and then
allowing it to slowly cool to refine its structure.

For the salesman, the achievements of the paradigm have to date been
rather modest. But as a general search tool simulated annealing has been
a spectacular success. Google Scholar lists over 18,700 citations to the
original research paper, an almost unheard of number.

Chained Local Optimization

The greatest impact of simulated annealing on current tour-finding meth-
ods is perhaps not the technique itself, but rather the fact that it brought
the thinking of physics into the TSP arena. Indeed, it was a second
major contribution from physicists that first pushed computational results
beyond the limits of repeated Lin-Kernighan.

In the late 1980s, Olivier Martin, Steve Otto, and Edward Felten, from
the physics department at Caltech, proposed an alternative to the dart-
throwing strategy. The idea is to take advantage of the fact that a strong
local-search algorithm, such as Lin-Kernighan, will typically take us up
into the high-elevation region of the tour landscape. Rather than starting a
second run of the algorithm from a random location, Martin et al. suggest
we first look around our current peak to see if there might not be a way to
jump over a few local barriers to reach a new slope to take us to an even
better location.

The specific proposal is to kick the Lin-Kernighan solution to obtain a
new starting tour, rather than throwing a dart. The overall process repeats
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Figure 4.25
A double-bridge kick.

this many times, replacing the solution whenever we reach a better tour. For
the method to work, a kick must take the solution out of its neighborhood,
so it should be a modification that Lin-Kernighan cannot easily undo.
Martin et al. found that a random 4-opt exchange of the type indicated
in figure 4.25 does the job nicely.

The resulting algorithm is dubbed Chained Lin-Kernighan and its
performance is outstanding. The stars were aligned for this idea. First,
Martin et al’s intuition was correct: visiting the nearby region via the
kicking mechanism is a better way to sample the peaks in the landscape; we
use Lin-Kernighan itself to guide us to the highest elevations. Second, the
reapplication of Lin-Kernighan to a kicked tour runs much more quickly
than an application to a random tour. This is simply due to the fact that
much of a kicked tour remains in good shape, so the algorithm does not
need many iterations to reach a locally optimal result.

For most of the 1990s, implementations of Chained Lin-Kernighan
ruled the world of tour finding. The version included in the Concorde
code routinely finds, in one or two seconds, solutions within 1% of the
cost of optimal tours for instances with up to 100,000 cities. For even
better solutions, one can turn to LKH, but Chained Lin-Kernighan remains
dominant on very large data sets. For example, the plot in figure 4.26
shows the results of a run on a 25,000,000-city Euclidean instance, with city
locations having integer coordinates drawn at random from a 25,000,000 x
25,000,000 square. In eight days, on a computer from the year 2000, a tour
that is approximately 0.3% greater than optimal was found.!”

Genetic Algorithms

An alternative to the landscape view is to consider a salesman’s route as a
living organism, mutating and evolving over time. This way of thinking
is taken up in a class of methods known as genetic algorithms, inspired
by John Holland’s landmark book Adaptation in Natural and Artificial
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Systems published in 1975.!% Holland did not treat the TSP, but his ideas
quickly made their way into the tour-finding literature.

A general outline of a genetic algorithm, as applied to the salesman,
is the following. We begin by generating a starting population of tours,
say by repeatedly applying nearest neighbor with random starting cities.
In a general step, we select some pairs of members of the population and
mate them to produce child tours.”” A new population of tours is then
selected from the old population and the children. The process is repeated
a large number of times and the best tour in the population is chosen as the
winner.

The spirit of genetic algorithms is to mimic evolutionary processes
found in nature. The analogy is fun, but keep in mind that merely adopting
the language of Darwin does not imply we end up with a good tour.
Indeed, early genetic algorithms for the TSP were not especially successful,
even while restricted to very small instances of the problem. But the
idea of maintaining a population of tours has considerable merit and the
general approach can be crafted into very strong heuristics, particularly in
combination with local-search procedures.

The genetic-algorithm outline leaves plenty of freedom for selecting
methods to evolve a tour population. Besides the mating process, we also
get to choose a fitness measure for selecting the next population. Some cool
ideas have been developed for such measures, seeking to balance the quality
of solutions with the need for a diverse population.

For mating itself, early schemes attempted to find subpaths in one
parent tour that could be substituted for subpaths in the other parent. This
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Figure 4.27
Mating two tours.

was rather restrictive, particularly in larger instances. A more successful
approach is to create a new tour by choosing a subpath in parent A and
extending it to a tour using, when possible, edges of parent B or edges
of parent A, with preference given to the edges of B. Another mating
technique, known as edge-assembly crossover (EAX), is illustrated on a pair
of USA tours in figure 4.27. To combine the blue and red solutions in the
example, we form the graph consisting of the union of their edges and select
a circuit, displayed in the third sketch in figure 4.27, that alternates between
blue and red. We then delete from the blue tour each of the circuit’s blue
edges and add to the blue tour each of the circuit’s red edges, as illustrated
in the fourth sketch. The process creates subtours that are combined into
a tour via a 2-opt move, displayed in the fifth and sixth sketches in the
figure.

The EAX mating scheme was adopted by Yuichi Nagata in one of
the most successful tour-finding procedures proposed to date.”* His im-
plementation relies on a very fast implementation of EAX, allowing the
algorithm to proceed through many generations of tours. Among Nagata’s
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achievements is his discovery of the best-known tour for the 100,000-city
Mona Lisa TSP.

Ant Colonies

At some point in your life you likely had the misfortune of losing food
to a group of hungry ants. Typically the pests arrive in your home or
garden via a long thin train of individuals, constantly moving back and
forth in a nearly straight line. A single ant moves haphazardly, but the entire
group, communicating via pheromone trails, finds an efficient route. This
collective behavior is the inspiration for a class of TSP heuristics known as
ant-colony optimization (ACO).

The leader of ACO research is Belgium’s Marco Dorigo, who developed
the ideas in his 1992 Ph.D. thesis.?! His algorithms work with a small army
of ant agents moving along the edges of a graph. Each agent traces out a
tour, selecting at each new vertex an edge chosen among those leading to
vertices not yet visited. The key to the process is the selection rule, which
makes use of a pheromone value associated with each edge; if an edge has a
high pheromone value then it has a high probability of being selected. After
the agents have all completed tours, the pheromone values are adjusted
using a rule that adds values proportional to the lengths of the computed
tours; edges in good tours get their values increased more than those in
poor tours.

The approach is both intuitive and appealing, but thus far ACO has not
proved to be competitive with Lin-Kernighan-based methods. In recent
years, however, the paradigm has been applied effectively to problems in

Figure 4.28

Ants working on the TSP.
Image by Giinter Wallner.
Originally appeared in the
book Bilder der Mathematik
by Georg Glaeser and Konrad
Polthier.
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other areas, such as scheduling, graph coloring, classification, and protein
folding. The active research topic is a good example of how a focus on the
salesman can lead researchers to interesting general-purpose methods for
attacking optimization problems arising in diverse applications.

And Many More

We have touched on only the best-performing applications of metaheuris-
tic ideas for the TSP. Other schemes include neural networks, tabu search,
and honeybee models, to name just a few. If you have a general search
mechanism in mind, the TSP is a great place to develop, polish, test, and
compare your strategy, even if your planned domain of application is far
away from the humble routing of a salesman.

The DIMACS Challenge

The breadth of activity in tour finding is a strength of the area, but it has in
the past led to misunderstandings concerning the state of the art. Indeed, in
the 1980s research papers appeared in premier scientific journals, such as
Nature, describing computations on TSP instances having 30 or 50 cities.
The reported results were typically weak approximations, at a time when
Lin-Kernighan could reliably deliver optimal solutions in a blink of an eye,
and Martin Grotschel and Manfred Padberg were tackling instances with
hundreds of cities via exact methods.

This difficulty was addressed by two important events in the following
decade. The first of these was the TSP 90 conference held at Rice Univer-
sity’s Center for Research in Parallel Computing. The organizers brought
together exact-solution experts such as Grotschel and Padberg, together
with tour-finding teams from around the world. An important outgrowth
of the meeting was the establishment of the TSPLIB collection of test
problems by Gerhard Reinelt from the University of Heidelberg. Reinelt’s
library was published in 1991, containing over 100 challenge instances
of the TSP gathered from academic and industrial sources. The TSPLIB
collection provides a common test bed for researchers around the world
and across academic disciplines.??

The second event was the DIMACS TSP Challenge, led by David S.
Johnson of AT&T Research. DIMACS is the short name for the Center
for Discrete Mathematics and Theoretical Computer Science, housed at
Rutgers University. In the 1990s DIMACS ran a series of implementation
challenges, the best known of which is the TSP Challenge.?®
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Figure 4.29
Left: Martin Grétschel, Gerhard Reinelt, and Manfred Padberg.
Right: Robert Tarjan, Dorothy Johnson, Al Aho, and David Johnson.

One goal of this Challenge is to create a reproducible picture of the
state of the art in the area of TSP heuristics (their effectiveness, their
robustness, their scalability, etc.), so that future algorithm designers
can quickly tell on their own how their approaches compare with
already existing TSP heuristics.

DIMACS made a call to the world’s tour finders, and the world responded
with 130 different algorithms and implementations. A great outcome of
the challenge is a Web site that allows for direct comparisons between
methods. The results are also gathered together in a very nice survey paper
by Johnson and co-organizer Lyle McGeogh.**

Johnson’s efforts in organizing the challenge, as well as his own detailed
computational studies of tour-finding methods, have been a great force in
shaping the current area of algorithm engineering. In 2010 he received
the Knuth Prize from the Association for Computing Machinery, cited
for his contributions to the theoretical and experimental analysis of algo-
rithms. A well-deserved recognition for one of the world’s leaders in TSP
research.

Tour Champions

Heuristic methods must strike a balance between running time and tour
quality. At the highest end of the scale we are willing to spend enormous
amounts of time to deliver the best solution that is practically possible. This
is Formula One racing, with participants in a no-holds-barred contest to
push down the lengths of best-known tours through challenge data sets.
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Figure 4.30
Left: Keld Helsgaun.
Right: Yuichi Nagata.

by

The world champions in this area are without a doubt Keld Helsgaun
of Denmark and Yuichi Nagata of Japan. Helsgaun’s LKH code has been
the gold standard in tour finding since its introduction in 1998, and he
has continued to extend and improve his algorithm with many new ideas.
Helsgaun is the current holder of the best-known tour in the World TSP
challenge, he provided the optimal tour for the record 85,900-city TSP, and
his name peppers the leader board for the VLSI Test Collection.”® Not to
be outdone, Nagata’s implementation of a genetic algorithm for the TSP
has produced the best-known tour in the Mona Lisa TSP challenge as
well as record solutions for the two largest examples in the National TSP
Collection.* If you want a good solution to a large problem, these are the
people to call.
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9. Linear Programming

The development of linear programming is—in my opinion—the
most important contribution of the mathematics of the 20th
century to the solution of practical problems arising in industry and
commerce.

—Martin Grotschel, 2006.

S electing the best tour through a set of points and knowing it is the best is
the full challenge of the TSP. Users of a brute-force algorithm that sorts
through all permutations can be certain they have met the challenge, but
such an approach lacks both subtlety and, as we know, practical efficiency.
What is needed is a means to guarantee the quality of a tour, short of
inspecting each permutation individually. In this context, the tool of choice
is linear programming, an amazingly effective method for combining a large
number of simple rules, satisfied by all tours, to obtain a single rule of the
form “no tour through this point set can be shorter than X.” The number X
gives an immediate quality measure: if we can also produce a tour of length
X then we can be sure that it is optimal.

Sounds like magic, but linear programming is indeed the method
adopted in Concorde and in all of the most successful exact TSP approaches
proposed to date. Moreover, its application to problems beyond the TSP
has made it one of the great success stories of modern mathematics.

General-Purpose Model

The tale of linear programming has a nice start, with a young George
Dantzig arriving late for a class given by Jerzy Neyman at the University
of California at Berkeley in 1939. The first-year graduate student hurriedly
copied down two problems he found written on the board and turned in
solutions several days later. “To make a long story short, the problems on



