

Identifying Peptide Ligands Through mRNA Display

Skyler Brown skyler19@mhs-la.org Marymount High School Los Angeles, Class of 2019 **USC Viterbi Department of Chemical Engineering, SHINE 2018**

Introduction and Objective

Professor Roberts invented mRNA display, a method to identify the peptide ligands that bind with specific target proteins. Chloe and I worked to characterize the effect of salt concentration and bead matrix on nonspecific binding.

Applications & Impact of Professor's Research

Locate Tumor Cells and Treat Cancer

Break Protein Protein Interaction

Acknowledgements

Thank you to everyone who has helped me throughout my SHINE experience. A special thanks goes out to Professor Roberts, Dr. Noridomi, Dr. Mills, Dr. Herrold, Chloe Kim, Marymount Highschool, and my parents.

Methods

PCR: DNA library is amplified/multiplied. **Transcription**: DNA is converted to mRNA.

Ligation: Puromycin/DNA strand is ligated to mRNA strand.

Urea Gel Purification: Ligated mRNA is separated from unligated mRNA. **Translation**: mRNA is converted to a sequence of amino acids (peptide).

* It remains attached to the mRNA sequence.

dT Purification: The ligated mRNA/peptide is purified.

Reverse Transcription: The synthesis of DNA from an RNA template.

* The DNA sequence allows us to identify the sequence of binder peptides. **Selection**: Selection of binder peptides by introducing to a target protein.

PCR and Next Round of Selection: Repeat round of selections until the library gets enriched.

Advice for Future SHINE Students

Take Advantage of All Learning Opportunities

Connections to STEM Coursework

Process

Austin, and Richard

Roberts

mRNA display revolves around the process of creating proteins. This directly relates to the coursework I studied in Biology. Additionally, I applied many chemical principles and information to accurately perform tasks. My work in the lab involved making buffers and altering the concentration of samples. Contrasting to knowledge I gained in the classroom, the lab stresses the bigger picture as well as the purpose of every step and experiment. I hope to continue looking for the bigger picture when I return to the classroom.

Skills Learned

PCR

Maldi

Lab Safety

Nanodrop

Centrifuge

Micro Pipetting

Agarose Gel Electrophoresis

Elutrap

Communicating Research

Valuable Student Techniques

- Practice preparing for labs
- Updating lab notebook
- Importance of understanding the purpose and bigger picture of each step