
A powerful and efficient neuromorphic computing
device would allow for neural networks to be
used in many more applications. For example, a
dedicated neuromorphic computing device on a
smartphone could allow for extremely fast image
recognition, or allow the smartphone to learn a
user’s behavior over time and use that to
improve the user experience. They could also be
used in larger applications to speed up the
running and training of neural networks. A
powerful neuromorphic computing device would
not only make running neural networks faster,
but also make them available to more devices.
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In the last few decades, computers have
advanced considerably, and can now perform
millions or even billions of simple mathematical
operations every second. However, they aren’t
designed to recognize patterns, unlike the
human brain. As a result, neural networks have
been developed to allow computers to recognize
patterns and categorize data. However, on
conventional computers, neural networks are
very slow and inefficient. As a result, researchers
are looking to create computing devices that are
faster and more efficient at processing neural
networks. Professor Kapadia’s lab is trying to
create computing devices that mimic synaptic
behavior, allowing them to quickly run neural
networks. One of the projects in Professor
Kapadia’s lab is the development of Indium
Phosphide transistors that have a tunable
conductivity. The tunable conductivity allows the
transistors to behave like the synapses in the
brain, or the neurons in neural networks. By
creating a device designed to behave like the
synapses in our brains, Professor Kapadia’s lab
is hoping to make neural networks much more
accessible.

The InP Synaptic Device is essentially a
transistor using an Indium Phosphide nanowire.
Applying voltage pulses to the gate results in
the trapping of electrons in the Al2O3 and TiO2,
changing the conductance of the InP. The above scatter plots indicate measured

data of how much voltage pulses changed the
conductance. As can be seen, the amount by
which the conductance changes varies, and
so we need to simulate this variance. Using
CrossSim, we can generate lookup tables
from the data to tell us the probabilities for
conductance change for a given conductance.

Figures 5 and 6 demonstrate the properties of
the InP transistor. The synaptic device’s
conductance responds differently to pulses
depending on its conductance, and there is
also noise involved. Because CrossSim allows
us to simulate these properties, we can use it
to determine how good an actual crossbar
using InP Synaptic Devices would perform
without building a physical device.
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Fig 1. Schematic of InP Synaptic Device. PC: Jun Tao

Simulating with CrossSim

CrossSim is an open source simulator developed
by Sandia National Laboratories to model
Resistive Random Access Memory (RRAM)
crossbars for neuromorphic computing. The InP
Synaptic Device has an adjustable conductivity,
so CrossSim can be applied to it. Below is a way
the device could be used in a crossbar: the
source is connected to ground, and the gate is
used for programming conductance. The current
flowing to the drain when a voltage is applied
depends on the conductance.

Fig 2. Basic structure of an InP Synaptic Device crossbar. PC: Jun Tao

Results

From the data, we can see that the
simulated InP Synaptic Device crossbar
can reach relatively high accuracies after
40 epochs, but is not quite as good as an
ideal crossbar, most likely due to variations
in conductance programming. As a result, it
could be suitable for applications that
require a very fast neural network, but that
don’t need extremely high accuracy.

Fig 7-9. Training performance comparisons of a crossbar 
using the simulated properties of the InP Synaptic Device 

compared to the performance of an ideal crossbar. PC: 
Tyler Weigand

Fig 3. Scatter plot of data 
points for how much a 

voltage pulse increases the 
conductance. PC: Tyler 
Weigand on CrossSim

Fig 4. Scatter plot of data 
points for how much a 
voltage pulse decreases 

the conductance. PC: Tyler 
Weigand on CrossSim

Fig 6. Cumulative Distribution 
Function of how much a 

voltage pulse decreases the 
conductance. PC: Tyler 
Weigand on CrossSim

Fig 5. Cumulative Distribution 
Function of how much a 

voltage pulse increases the 
conductance. PC: Tyler 
Weigand on CrossSim


