
The Zavaleta Lab utilizes nanomedicine with the 
help of optical imaging to help surgeons better 
identify margins for tumor resection and even 
improve early cancer detection.
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• Together with the diverse team of the 
Zavaleta Lab but more specifically with my 
PhD mentor, Alexander, we studied Surface 
Enhanced Raman Spectroscopy (SERS) 
particles

• Specifically studying the unique intensifying 
effects of gold nanoparticles on the Raman 
spectra of different molecules and objects

• We aim to use Raman spectroscopy in order 
to streamline the process of staining for 
many cancer biomarkers and eventually 
tailor a patients cancer treatment to their 
precise cancer configuration 

SERS Nanoparticles Limit of Detection 
• Performed a 2x dilution series across 13 tubes 

of BMMBP gold nanoparticles, until their 
spectra were no longer detected

• 200 microliters (𝜇L) of pure Milli-Q water used 
as a control in each well-plate 

• First well consisted of purely BMMBP gold 
nanoparticles, 100mL were then pipetted into 
the second well, this process was repeated 13 
times
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Figure 2:  SERS Nanoparticles spectra of BMMBP during dilutions 
PC: Alex
• As seen in figure 1, the same unique Raman 

spectra of BMMBP is seen throughout the 
experiment, getting continuously less defined

Figure 3: Linear trend seen in intensity of gold nanoparticles until 
they plateau and the signatures become unreadable PC: Gabriella 
and Alex

Figure 4A: Hematoxylin 
stained liver sample under 
bright light microscope

Figure 4C: uncoverslipped
liver sample stained with 
hematoxylin put under 
Raman spectrometer. 
Nuclei are well defined and 
correlated with bright light 
image.
PC: Alex

Figure 4B: coverslipped liver 
sample stained with 
hematoxylin put under 
Raman spectrometer. Nuclei 
are less defined and not 
reliably detected.

• Demultiplexing: a process of trial and error 
can be used to work backwards in 
distinguishing different dyes using the 
Direct Classical Least Squares Algorithm

• Dilutions allow for one to find the range of 
linearity needed for demultiplexing

• This relies on the idea that the spectra of 
each dye used will be unique and linear

• By using the ideal concentration of Milli-Q 
water to nanoparticles, one can then stain 
a singular tissue sample with many dyes 
to identify biomarkers and demultiplex the 
image in order to detect each stain

• Future studies may include using 
differently designed Si phantoms to 
measure imaging resolution

Figure 5: Raman Spectrometer PC: Gabriella

• Type of optical imaging which targets a laser 
beam at molecules causing for new 
molecular vibrations in their excited state

• Spectra are collected when energized, 
inelastically scattered particles bounce back 
up into the lens creating distinctly unique 
spectra shared only by that molecule

• Can be used to show surgeons where 
healthy tissue ends and a malignancy 
begins as well as to help pathologists stain 
tissue samples with greater efficiency

Figure 1: example of the function of a Raman Spectrometer 
Source: www.sas.upenn.edu
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