
Semantic Code Search with Word Embeddings
Erica Assang | ericaassang@gmail.com

INK Lab

Proof School, Class of 2023

USC Viterbi Department of Computer Science, SHINE 2021

Overview Connections to Prior WorkSkills Learned Methods

Machine learning as applied to natural

language processing is a method that

allows computers to gain a semantic

understanding of text through data

analysis. In other words, machine learning

models can “learn” like humans do by

identifying abstract patterns across large

amounts of data, sample pairs of an input

and an output (called a "label"). This

method enables machines to complete

tasks such as determining whether a

movie review is positive or negative, or

understanding the relationship between

two statements, but it can also be applied

to code. During this program, I focused on

improving a module of my mentor’s

project, conducting semantic code search.

The module takes in a block of code and a

possible description of the code’s

functionality, and then assesses the

likelihood that the code matches the given

description.

Prof. Ren's Research at INK Lab

Prof. Ren’s research involves work in

natural language processing, data

mining, converting natural language to

computer compatible forms, and

developing machine learning algorithms

capable of attaining accurate results

without a large database of labeled inputs.

He approaches these areas with a focus

on machine learning algorithms that use

imprecise or otherwise non-ideal data to

generate labels for initially unlabeled data,

which in turn can be used for training a

model. This approach is significantly more

cost efficient than using labeled data only.

While working on my project, I have

learned how to:

1) Use the Pytorch coding library

for machine learning

2) Use Git software and Vim text editor in

terminal

3) Export and utilize code from Github

I also gained a deeper understanding

of neural networks, tokenization and

word embeddings, and other core

concepts in machine learning and natural

language processing.

Pytorch

https://pytorch.org/

Github

https://en.wikipe

dia.org/wiki/File:

Octicons-mark-

github.svg

Git

https://commons.wikime

dia.org/wiki/File:Git-

logo.svg

In order to compare the description (or

"query") to the code accurately, the

program first tokenizes both. In this

process, the machine identifies

punctuation, spaces, and new-line

characters and breaks up the strings into

words (using a trained dictionary). These

tokens are then broken into “subwords,”

which separate the root of each word

from any prefixes or suffixes.

Example text: 'This is a poster

about machine_learning'

In working on this project, I utilized my

experience coding in Python and was

also able to apply skills and concepts from

my Java classes. Additionally, my ability to

understand others' code efficiently and

learn new libraries have improved

significantly through working with my

mentor.

vis_dfs[3] # query token = 'version'

0 1 2 3 4 5 6 7 8 9 10

0 def parse^ _ versions (s) : parts =

Figure 1. Word embeddings example. Here, the code looks for words similar to 'version' in the tokenized

code, making more similar tokens appear more saturated. Notice that the token 'versions' is bright red, while

the loosely related word 'parts' is lighter in color, and other words have barely any color.

Further Research

Possible extensions for this module

include:

1) Making it compatible with

multiple coding languages (the module

is currently Python-compatible only)

2) Improving the word embeddings

to consider relationships

between words and symbols (e.g. ‘list’

and ‘[]’) and to identify abbreviations

more accurately

Acknowledgments

Special thanks to Prof. Xiang

Ren for providing me this opportunity,

and to my mentor Shushan Arakelyan

for guiding me through the project and

taking the time to share her knowledge. I

would also like to thank Dr. Katie Mills and

SHINE team for making this program

possible.

Possible Tokenization: ['This', 'is',

'a', 'poster', 'about', 'machine_^', 'learn^',

'ing']

We then identify key words or tokens in the

query, and search through the tokenized

code for similar words. We give the code

an understanding of semantically

similar words using a deep learning model

that has been exposed to textual data.

This model uses the data to graph words

by representing each with a vector. Words

are thus considered similar if their

corresponding vectors are close to each

other (Fig. 1). In this way, the model

can gauge the likelihood that the

query describes the code by quantifying

the similarities between the individual

tokens.

