
I would like to thank Professor Nora

Ayanian for welcoming me to the ACT Lab

and giving me this learning opportunity. A

big thank you to my mentor, Eric Ewing, for

explaining MAPF theory and guiding me

throughout this project. Finally, thank you

to Dr. Katie Mills, Monica Lopez,

Cassandra Jeon, and the rest of the SHINE

team and cohort for making this such an

enriching and fun-filled experience!

Multiagent Pathfinding (MAPF) aims to facilitate

efficient coordination between multiple mobile

robots in a finite closed environment. These

robot “agents” must navigate from their starting

locations to their respective goals using the

most efficient route that results in no conflicts

with other agents or obstacles.

Introduction Methods

Future Research

Acknowledgements

Objective & Impact of Research

MAPF and Trajectory Optimization with Drones
Ashna Khemani, ashna.khemani@gmail.com

ACT Lab

American High School, Class of 2022

USC Viterbi Department of Computer Science, SHINE 2021

Professor Nora Ayanian ACT Lab is developing

algorithms for the coordination of multiple

robots to complete automated tasks more

efficiently. This would help make such teams of

robots more commonplace in industry and

possibly even in everyday life.

Currently, a popular application of MAPF is in

warehousing, such as in Amazon’s Colorado

facility, where human workers load packages

onto robots, along with the corresponding

destination within the warehouse. Each of the

robots must find the shortest path to their

destinations while predicting and avoiding any

possible conflicts with other robots or

obstacles.1

Having an effective MAPF algorithm allows the

human workers to rely more on these robots,

reducing the physical and mental strain that

often comes with the repetitive and physically

demanding nature of such jobs.

Fig. 1:

Simulation of

coordination

between robots

at an Amazon

warehouse

PC: Amazon

Runtime Analysis

I analyzed the relationship between the number of agents and the runtime by steadily increasing the

number of agents from 2 to 10. For each set, I ran CBS fifty times and recorded the average runtime (Fig.

6). I used two SciKitLearn modules, PolynomialFeatures and LinearRegression, to find a line of best fit for

this data (Fig. 7). A quadratic curve fit the data best, showing this is an Θ(n2) algorithm.

Fig. 7: Scatter plot of

data from Fig. 6 and

its line of best fit.

PC: Ashna Khemani

Fig. 6: Runtime data

collected and used to find

the line of best fit

PC: Ashna Khemani

• Reading and understanding scientific

literature

• Capturing, analyzing, and presenting

data

• Learning about the different systematic

approaches to MAPF

• Understanding derivation and methods

behind Bézier curves

• Effectively creating and using classes in

Python

• Using various data structures such as

arrays, sets, queues, stacks, and more

Skills Gained

• Before exploring MAPF, I first implemented Single-Agent Pathfinding (SAPF) algorithms like A* using

Python and used MatPlotLib to visualize the results (Fig. 2).

• Though A* is a SAPF algorithm, it can be extended to MAPF by combining it with the Conflict-Based

Search (CBS) algorithm. This fusion allows multiple agents to use A* to get to their respective goals

while coordinating to avoid conflicts with one another (Fig. 3).

• One challenge with the solution in Fig. 3 is the sharp turns. These would be difficult for agents to

execute, especially if they are drones. Instead, it is much easier for drones to follow rounded curves,

which can be created using Bézier curves. This is essentially like “pulling” on the lines surrounding

these sharp corners in different directions to form a smooth curve.

• Implementation of Bézier curves to “round” the paths formed by CBS is shown in Fig. 4.

• These methods were then tested in a more complex instance, with a larger environment and more

agents (Fig. 5).

Fig. 2: A* for a single agent

PC: Ashna Khemani
Fig. 3: CBS allowing coordination

between four agents

PC: Ashna Khemani

Fig. 4: Using Bézier curves to

make softer, rounder turns.

PC: Ashna Khemani

Fig. 5: Extending to a larger

environment with more agents

PC: Ashna Khemani

1 Simon, Matt. “Your First Look Inside Amazon's Robot

Warehouse of Tomorrow.” Wired, Conde Nast, 5 June 2019

of Agents
Avg. Runtime

(ms)

2 20.742

3 223.914

4 426.549

5 432.280

6 1838.574

7 2043.750

8 1844.476

9 3438.979

10 3644.972

• Simulating a more continuous space

that allows more direct trajectories

• Implementing obstacle avoidance and

narrow corridor navigation

• Setting a preference for smaller

changes in direction

• Incorporating physical properties and

behaviors of real drones

• Adding efficiency metrics beyond path

length, such as elevation gain

• Optimize growth of algorithm runtime,

which is currently Θ(n2)

