
SyGuS and CVC5
The syntax-guided synthesis problem (SyGuS) is a logical framework for the program synthesis problem. The input to SyGuS consists of a
background theory, a semantic correctness specification for the desired program given by a logical formula, and a syntactic set of candidate
implementations given by a grammar. The computational problem then is to find an implementation from the set of candidate expressions so
that it satisfies the specification in the given theory.
CVC5 is an efficient open-source automatic theorem prover for Satisfiability Modulo Theories (SMT) problems. It can be used to prove the
satisfiability of first-order formulas with respect to (combinations of) a variety of useful background theories. It further provides a Syntax-
Guided Synthesis (SyGuS) engine to synthesize functions with respect to background theories and their combinations.

.
Professor Ragohotaman’s research is about
program synthesis, formal verification, and static
analysis through the use of machine learning and
formal methods.

● Program synthesis is the task of automatically
finding a program that satisfies the user intent
expressed in the form of a specification.

● Formal verification is the act of proving or
disproving the correctness of intended
algorithms underlying a system with respect to
a certain formal specification or property,
using formal methods of mathematics.

● Static program analysis is the analysis of
computer programs performed without
executing them,

● Machine learning is a field of inquiry devoted
to understanding and building methods that
'learn' that is, methods that leverage data to
improve performance on some set of tasks.

Professor Raghothaman’s research aims to
combine these concepts to make software
development easier for humans.

Firstly, I’d like to thank my parents for making this possible. I’d also like to formally thank Professor Mukund Ragohotaman and
Amirmohammad Nazari for mentoring me. Amir has been such an amazing person to work with and he has really opened my
eyes. Lastly I would like to thank the SHINE staff for being such great accommodators!

Program synthesis is the task of automatically finding
a program in the underlying programming language
that satisfies the user intent expressed in the form of
some specification.

Recursion is a method of solving a computational
problem where the solution depends on solutions to
smaller instances of the same problem. Recursion
solves such recursive problems by using functions
that call themselves from within their own code.

Recently, there has been growing interest in
recursive program synthesis, so our goal is to
synthesize recursive programs implementing
intended behaviour.

Introduction Methods

Acknowledgements

Objective & Impact of Professor’s 
Research

Synthesis of Recursive Programs
Philip Chen, philipchen247@gmail.com

Walnut High School, Class of 2024
USC Viterbi Department of Computer Science, SHINE 2022

Synthesizing a non-
recursive program

Finding equivalent 
non-recursive 

programs
Synthesizing a 

recursive programExtracting patterns

Egg and E-Graphs
An e-graph efficiently represents a congruence relation over many expressions.
The egg library uses e-graphs to provide a new way to build program optimizers
and synthesizers and provides high-performance, flexible e-graphs
implemented in Rust. It also allows syntactic rewrites in order to modify
expressions. We want to use these concepts to rewrite expressions in order to
find patterns.

Our Approach
Given a specification, CVC5 produces a non-recursive program. Unfortunately, non-recursive programs only work for limited inputs, not for
any inputs. Our goal is to synthesize a recursive program that works for all inputs. We designed an algorithm with four steps to synthesize
recursive programs. Using the non-recursive implementation from CVC5, we generate all equal expressions using Egg. This involves
rewriting rules that enable us to expand an e-graph with all possible combinations of expressions. From there, we detect a pattern that
generalizes the implementation. However, not all recursive programs have a pattern. Therefore, we locate the recursive expressions that do
have patterns and extract them. Finally, we synthesize a a recursive program that works for any inputs of the function based on the pattern.

The expression (a *2) / 2 can be rewritten a number of ways and some possibilities 
are shown in the e-graph.

The steps for our algorithm to synthesize recursive programs.


