
Professor Raghothaman’s research places a key
emphasis on harnessing the potential of machine

learning, program synthesis, and formal methods to
make the job of programmers easier.

● Formal verification is the task of displaying the
accuracy of sub-algorithms in a program that’s
provided by synthesizers through formal reasoning
and mathematical methods.

● Static program analysis demonstrates program
properties and behaviors, allowing errors to be
easily identified without ever actually running the
program.

● Machine learning, an extremely current field and
still unknown field in technology, has the power to
“learn” from users and data to be able to utilize
resources and maximize customization like never
seen before.

Program synthesis is the process of automatically
providing a program in a particular language.

For example, a user may provide an input of [4, 3, 5]
and an output of [3, 4, 5]. Based on the specification,
the synthesizer will return a program that sorts lists.

The issue lies in the complexity of the sub-functions
employed by synthesizers. Users find difficulty in

understanding their purpose within the program and are
unable to have complete confidence in the synthesizer.

example code returned from a synthesizer

The solution proposed was to create an accurate
algorithm that could read the code returned by the
synthesizer, identify the specific purpose of each
sub-function in the code, and assign them all a

reliable name.

Four specific algorithms were created (BU, F, R, S).
Those, along with Open AI’s Chat-GPT (C) were

tested on how accurate and reliable their produced
names were.

I went through 200 higher-order sub-functions and
hand-assigned each one a list of suitable names.To

ensure accurate results, I used a number of
methods to analyze each sub-function:
● modifying code with print() statements
● inspecting IO files (input, output)
● code tracing

With these names, I then had to verify my mentor’s
created names to ensure accuracy and that no bias

existed.

snippet of name verification table

Once each of the 200 sub-functions had its specific
list of names, I then sent the sub-functions through

each of the five algorithms.

My generated names and the
algorithmically-generated name results were

compared using a mathematical scale. Each name
was scored from 0 to 1. Names at or above a specific

value were counted as “reliable” and “trustworthy”.

Introduction Project Summary

Objective of Professor’s Research

Program Analysis & Explainability
Shivani Wadhwa | shivaniwadhwa723@gmail.com | SHINE Lab

 Arcadia High School, Class of 2024
USC Viterbi Department of Computer Science, SHINE 2023

After comparing all 200 sub-functions with each of the
five algorithms, I was able to calculate an average

percent accuracy for each algorithm.

To do this, I wrote a python program in Visual Studio
Code that directly accessed data from the document
(.docx) file of scores and specifically calculated each

different algorithm’s average.

snippet of written python program

RESULTS

The results I found verified the order of the predicted
algorithms in terms of accuracy and reliability. Note
the “C” value (chatGPT) was measurably lower

than any of the created algorithms.

Acknowledgements

I would like to thank Professor Mukund
Raghothaman for providing me the opportunity
to work in his lab and Monica and Marcus for
their help in setting up this program for us. I’d
also like to thank my lab mentor, PhD student

Amirmohammad Nazari for all his help,
guidance, and expertise that allowed me to

complete this project. Lastly, I’d like to thank my
center mentor Minsun for her role in making the

whole CS sub-cohort feel welcome and
comfortable on campus!

Analyzing Results

Next Steps

Based on a user-study, these algorithms have proven
to be highly beneficial for enhancing programmer
understanding. However, the current names merely
provide a high-level overview of the code's function.
Moving forward, the next crucial step is to update the
algorithm to provide detailed explanations for each
line within the sub-function. This advancement will
allow absolute clarity and comprehension of the
entire program.

While computer scientists often aim to create
programs for external causes, my time at USC
SHINE introduced me to the idea of designing

tools to instead help and enhance a
programmer's efficiency. Working with Python's

higher-order functions challenged me and forced
me to delve deeper into programming

fundamentals. I also got to take a MATLAB
course and earn certification. Additionally, I

learned about the research and paper process
and discovered the significance of related works,

data from user studies, and abstracts.

Relating to STEM Coursework

Citations

ALUR, R., BODIK, R., DALLAL, E., FISMAN, D., GARG,
P., JUNIWAL, G., KRESS-GAZIT, H., MADHUSUDAN,
P., MARTIN, M. M. K., RAGHOTHAMAN, M., SAHA, S.,
SESHIA, S. A., SINGH, R., SOLAR-LEZAMA, A.,
TORLAK, E., & UDUPA, A. “Syntax-Guided Synthesis”,
2013, https://sygus.org/assets/pdf/Journal_SyGuS.pdf

Ko, A. J., & Myers, B. A. “Debugging Reinvented: Asking
and Answering Why and Why Not Questions about
Program Behavior”, 2008,
https://faculty.washington.edu/ajko/papers/Ko2008Java
Whyline.pdf

Comp Results My Results

BU 85.1% 63.5%

C 22.0% 20.1%

F 83.2% 47.5%

R 79.3% 55.4%

S 58.0% 43.0%

user desires
a specific
program

describes
expected

result

sent
through

synthesizer

automatic
code

generated

Function Name Name to be Checked Verification

increment elements
by one

increase elements by one

count occurrences
of x in list

count occurrences of k

remove all even
elements

remove odds

BU name

mailto:shivaniwadhwa723@gmail.com

