
Professor Pedram's lab focuses on power awareness
in VLSI circuits and systems with current research on
Spiking neural networks (SNNs) to achieve trainable
neuron circuits. As part of the Discover Expedition
project, the lab also aims to develop and demonstrate
superconductor electronics (SCE) and
superconductive computing technology to reduce the
energy requirements of national computing
infrastructure significantly. SuperSoCC stands for the
superconductive system of cryogenic (computing)
cores, the first step toward realizing an exascale
superconductive supercomputer. The goal is,
therefore, to build a fully operational SuperSoCC to
execute applications at scale.

● I plan to further my research of SNN and
STDP in robotics as I’ve read about their
ability to accomplish a multi-task
autonomous learning paradigm, applying
many biological inspirations. DNNs’
potential in automatic combat recovery,
speech processing, and adapting
high-dimensional data are essential to
the future robotic community.

● I advise future SHINE participants to
display their earnest passion and get to
know their mentors without hesitation to
ask questions.

I would like to thank Professor Pedram for giving
me the opportunity to research in S.P.O.R.T lab
as well as my mentors Sasan Razmkhah, Zeynep
Ucpinar and Altay Karamuftuoglu for guiding me
through my project. Additionally, I would like to
thank Marcus Gutierrez, my Center Mentor for
supporting me through the program in my difficult
times. SHINE program.

Neural network, especially Deep neural network
(DNNs), has been recognized to be effective machine
learning process, applicable from automated driving to
medical devices. However, their training can be time
and energy-intensive. One class of DNNs, known as
the Spiking neural networks (SNN), mimics the
biological brain and produces discrete spikes based
on to transfer of information between neurons. To
further simulate biological networks,
STDP SNN network
with LIF and Dense
processes can be trained.

 Fig1. STDP applied to neural
 network

Firstly, I program one single neuron because the
generalized network requires intense programming and
advanced concepts.

Then, I performed SNNs on the Iris dataset to classify
three types of iris. I learned how to use the Numpy library
to transform and input the dataset there.

To allow any data to pass into the NN, I generalized the
previously hard-coded NN and applied one hot encoding
for classification comparison under the scikit-learn library.
The network runs on Pycharm, distributed by Anaconda,
Ubuntu, a system I had to learn.

Then I learned/previewed various machine learning
models’ implementation, bias-variance tradeoff, and
TensorFlow (Keras) in NN for classification.

Fig5. Creating layers with Keras

They all led up to my final learning, the Lava framework,
in order to construct unsupervised learning: MNIST Digit
Classification and the Spike-timing Dependent Plasticity
(STDP) phenomenon. STDP is a spike-based formulation
of a Hebbian learning rule, where synaptic weights
increase proportionally to two neighboring neurons’
activation/deactivation. As for MNIST hyperparameter
tuning, I trained and then pruned new parameters.

Introduction Research & Learning Process

Next Steps for You & Advice to
Future SHINE participants

Acknowledgements

Objective & Impact of Professor’s
Research

Exploration of STDP Training of Spiking Neural Network
Keyun(Coco) Xiao | S.P.O.R.T Lab

Orange County School of the Arts, Class of 2025
USC Viterbi | Ming Hsieh Department of Electrical Engineering, SHINE 2023

Iris Neural Network:
1. Quantize parameter, sepal length(x1), sepal width(x2),

petal length(x3), petal width(x4), into int.
2. Layer1: Plug int parameters into the below operations,

which give sums S1-4; a spike is released for every S
if its S is higher than the Threshold value, which
returns 1, or return 0 if S is lower. Repeat the process
for Layer 2.

3. S5-S7 makes up for a number set of three 0/1s
4. read dataset txt file by line,

i. create an empty string to extract numbers
and classes, then convert it to a list
separately

5. Result:

Generalized Network:
1. Pass input, weight (w), and threshold as NumPy

arrays.
2. Sum: For loop w*input until the length of the weight

array
3. Spike: Compare the sum with the Threshold value to

return 0 or 1.
4. Take the last column as a class and reshape it into a

column vector.
5. Perform one-hot encoding on class column vector.
6. Return data and corresponding classes.

MNIST Digit Classification hyperparameter tuning:
1. Pre-training verification for available GPU
2. Training using SNN torch and Lava

a. adjust the number of layers and neurons in each
layer in the program file

b. import weight when finished
3. Pruning

a. satisfy limitations on the hardware
b. calculate final_sparsity to fit desired fan in

(case1: 32, case2: 64) and limit synapses going
into a neuron

c. import & test if weights satisfy the fan in cases.
i. if not, then explore the floating points of

final_sparsity and re-prun
4. Result

Citations

[1] A. Bozbey, M. A. Karamuftuoglu, S. Razmkhah,
and M. Ozbayoglu, “Single Flux Quantum Based
Ultrahigh Speed Spiking Neuromorphic Processor
Architecture”, http://arxiv.org/abs/1812.10354
[2] Fisher,R. A.. (1988). Iris. UCI Machine Learning
Repository. https://doi.org/10.24432/C56C76.
[3]Mouha, Radouan Ait. “Deep Learning for
Robotics.” Journal of Data Analysis and
Information Processing, vol. 09, no. 02, May 2021,
pp. 63–76,
https://doi.org/10.4236/jdaip.2021.92005.

Methods & Results

The accuracy increase proportionally with layers,
neurons, and fain. However, since fanins or synaptic
weights increase power consumptions significantly,
along with the other two parameters, should be
lowered. Thus the balance point for power
optimization need to established.

Results Analysis

Fig3. visual map of
the network

Fig4. 3 types of iris

Fig2. architecture equation
of a single neuron
* g = activation function

Layer1: Layer2:

weight

This network’s throughput is 10GHz,
which stays constant for all layers since
it directs one layer to another, but the
latency (latency = #layer*100 ps)
increase by 100ps per addition of a
single layer.

Fig6.
neural
network of
classifying
a 3 layer
MNIST
digit.

