
Professor Pedram's lab focuses on power awareness 
in VLSI circuits and systems with current research on 
Spiking neural networks (SNNs) to achieve trainable 
neuron circuits. As part of the Discover Expedition 
project, the lab also aims to develop and demonstrate 
superconductor electronics (SCE) and 
superconductive computing technology to reduce the 
energy requirements of national computing 
infrastructure significantly. SuperSoCC stands for the 
superconductive system of cryogenic (computing) 
cores, the first step toward realizing an exascale 
superconductive supercomputer. The goal is, 
therefore, to build a fully operational SuperSoCC to 
execute applications at scale.

● I plan to further my research of SNN and 
STDP in robotics as I’ve read about their 
ability to accomplish a multi-task 
autonomous learning paradigm, applying 
many biological inspirations. DNNs’ 
potential in automatic combat recovery, 
speech processing, and adapting 
high-dimensional data are essential to 
the future robotic community.

● I advise future SHINE participants to 
display their earnest passion and get to 
know their mentors without hesitation to 
ask questions.

I would like to thank Professor Pedram for giving 
me the opportunity to research in S.P.O.R.T lab 
as well as my mentors Sasan Razmkhah, Zeynep 
Ucpinar and Altay Karamuftuoglu for guiding me 
through my project. Additionally, I would like to 
thank Marcus Gutierrez, my Center Mentor for 
supporting me through the program in my difficult 
times. SHINE program.

Neural network, especially Deep neural network 
(DNNs), has been recognized to be effective machine 
learning process, applicable from automated driving to 
medical devices. However, their training can be time 
and energy-intensive. One class of DNNs, known as 
the Spiking neural networks (SNN), mimics the 
biological brain and produces discrete spikes based 
on to transfer of information between neurons. To 
further simulate biological networks, 
STDP SNN network
with LIF and Dense 
processes can be trained.

     Fig1. STDP applied to neural 
     network

Firstly, I program one single neuron because the 
generalized network requires intense programming and 
advanced concepts. 

Then, I performed SNNs on the Iris dataset to classify 
three types of iris. I learned how to use the Numpy library 
to transform and input the dataset there.

To allow any data to pass into the NN, I generalized the 
previously hard-coded NN and applied one hot encoding 
for classification comparison under the scikit-learn library. 
The network runs on Pycharm, distributed by Anaconda, 
Ubuntu, a system I had to learn.

Then I learned/previewed various machine learning 
models’ implementation, bias-variance tradeoff, and 
TensorFlow (Keras) in NN for classification.

Fig5. Creating layers with Keras

They all led up to my final learning, the Lava framework, 
in order to construct unsupervised learning: MNIST Digit 
Classification and the Spike-timing Dependent Plasticity 
(STDP) phenomenon. STDP is a spike-based formulation 
of a Hebbian learning rule, where synaptic weights 
increase proportionally to two neighboring neurons’ 
activation/deactivation. As for MNIST hyperparameter 
tuning, I trained and then pruned new parameters.
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Iris Neural Network:
1. Quantize parameter, sepal length(x1), sepal width(x2), 

petal length(x3), petal width(x4), into int.
2. Layer1: Plug int parameters into the below operations, 

which give sums S1-4; a spike is released for every S 
if its S is higher than the Threshold value, which 
returns 1, or return 0 if S is lower. Repeat the process 
for Layer 2.

3. S5-S7 makes up for a number set of three 0/1s
4. read dataset txt file by line, 

i. create an empty string to extract numbers 
and classes, then convert it to a list 
separately

5. Result:

Generalized Network:
1. Pass input, weight (w), and threshold as NumPy 

arrays.
2. Sum: For loop w*input until the length of the weight 

array
3. Spike: Compare the sum with the Threshold value to 

return 0 or 1.
4. Take the last column as a class and reshape it into a 

column vector.
5. Perform one-hot encoding on class column vector.
6. Return data and corresponding classes.

MNIST Digit Classification hyperparameter tuning:
1. Pre-training verification for available GPU
2. Training using SNN torch and Lava

a. adjust the number of layers and neurons in each 
layer in the program file

b. import weight when finished
3. Pruning

a. satisfy limitations on the hardware
b. calculate final_sparsity to fit desired fan in 

(case1: 32, case2: 64) and limit synapses going 
into a neuron

c. import & test if weights satisfy the fan in cases.
i. if not, then explore the floating points of 

final_sparsity and re-prun
4. Result
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Methods & Results

The accuracy increase proportionally with layers, 
neurons, and fain. However, since fanins or synaptic 
weights increase power consumptions significantly, 
along with the other two parameters, should be 
lowered. Thus the balance point for power 
optimization need to established. 

Results Analysis

Fig3. visual map of 
the network

Fig4. 3 types of iris

Fig2. architecture equation 
of a single neuron
* g = activation function

Layer1:                                      Layer2:

weight

This network’s throughput is 10GHz, 
which stays constant for all layers since 
it directs one layer to another, but the 
latency (latency = #layer*100 ps) 
increase by 100ps per addition of a 
single layer. 

Fig6. 
neural 
network of 
classifying 
a 3 layer 
MNIST 
digit.


