Motivation & Impact

Treatment:
Lithium therapy is commonly used, but requires careful monitoring due to toxicity.

- Long waiting time
- Inconvenient doctor visits
- Uncomfortable
- Expensive

At Home Testing
(Saliva)¹
- Non-invasive
- Requires less processing
- Portable
- Affordable

Doctor testing
(Blood)

Li-Selective Membrane
- Polymer: PVC
- Plasticizer: o-NPOE
- Ionic Site: Potassium tetrakis(4-chlorophenyl)borate
- Ionophore: Li-Ionophore VI

Methods & Results

Nernst Equation

\[E = E_0 + \left(\frac{RT}{nF} \right) \log C \]

Electrochemical method used to detect different ions (lithium, in this case). Nernst equation predicts potentials with activities in equilibrium proportion.

Calibration in Saliva

![Graph showing calibration in saliva](image)

Selectivity Assessment

![Graph showing selectivity assessment](image)

References

- “Saliva Test Could Be Used for Lithium Monitoring among Patients with Mood Disorders.” News-Medical.net, 4 Oct. 2021, (1)

Conclusion and Future Work

The lithium electrons were successful as it can detect toxic levels of Lithium. In the future these electrodes will provide patients fast accurate detection of lithium in their systems.

SHINE Impact

SHINE connected me with PhD students, enriching my biomedical education. Despite challenges, it boosted resources and confidence.

Acknowledgements

Thank you, Steven Dorfman for the opportunity to be part of SHINE. As well as Dr. Maral Mousavi, and my mentors Victor Ong, Ali Soleimani, and Farbod Amirghasemi.

Bipolar disease:
A brain disorder characterized by mood changes and impaired functioning.

Treatment:
Lithium therapy is commonly used, but requires careful monitoring due to toxicity.

Depression

- 0.4 mM
- 0.6 mM
- 0.8 mM
- 1.0 mM

Mania

Relapse

Chronic Toxicity

Acute Toxicity

Limit of Detection: 0.299 mM

Nernst Equation

The fabricated sensors were calibrated in artificial saliva to validate sensors performance are selectivity toward lithium.