Remember not to Forget: Implementing Continual Learning in Recurrent Neural Networks
Shaurya Mittal, USC GLAMOR Lab
Sage Hill School, Class of 2026: SHINE 2024

Neural networks can process data very efficiently. However, for real-world applications, these neural networks must continue to grow while remembering their previous training. In this project, I used and optimized continual learning for recurrent neural networks (RNNs).

Initial Results:
Initial Accuracy Rate: ~60%
Main Errors: Similar Languages (ex: Spanish and Portuguese)

Challenge of Continual Learning:
NN must retain knowledge when it is trained further on new tasks/languages.

Data Split into 3 Subsets:
Section 1: Romance Languages
Section 2: Germanic + other European Languages
Section 3: Asian + Middle Eastern Languages

Importance: Helps understand nuance of similar languages

Continual Learning: Dataset Accuracies stayed constant (deviation <5%) even when not actively trained on

Final Results:
Final Accuracy Rate: ~55%
Most Accurate Dataset: Subsets 2 and 3 (same average)

Implementation and Training
Next Step: Continual ML

Citations

Acknowledgements
I want to thank my mentor Tejas, who guided me and helped me at the many points I got stuck. I also want to thank the rest of the GLAMOR lab, as well as the friends I made at SHINE. Lastly, I want to thank my parents for making all of this possible.